मराठी

Let * Be a Binary Operation on the Set Q Of Rational Numbers as Follows: Find Which of the Binary Operations Are Commutative and Which Are Associative. - Mathematics

Advertisements
Advertisements

प्रश्न

Let * be a binary operation on the set of rational numbers as follows:

(i) − 

(ii) a2 + b2

(iii) ab 

(iv) = (− b)2

(v) a * b = ab/4

(vi) ab2

Find which of the binary operations are commutative and which are associative.

उत्तर

(i) On Q, the operation * is defined as * b = a − b.

It can be observed that:

`1/2 * 1/3 = 1/2 - 1/3 = (3-2)/6 = 1/6`  " and " `1/3 * 1/2 = 1/3- 1/2 = (2-3)/6 = (-1)/6`

`:. 1/2 * 1/3 != 1/3 *  1/2` where `1/2, 1/3 in Q`

Thus, the operation * is not commutative.

It can also be observed that:

`(1/2 * 1/3) * 1/4 = (1/2  - 1/3) * 1/4 = 1/6 * 1/4 = 1/6 - 1/4 = (2 -3)/12 = (-1)/12`

`1/2 * (1/3 * 1/4) = 1/2 * (1/3 - 1/4) = 1/2 * 1/12 = 1/2 - 1/12 = (6 -1)/12 = 5/12` 

`:. (1/2 * 1/3) * 1/4 != 1/2 * (1/3 * 1/4)` where `1/2, 1/3, 1/4 in Q`

Thus, the operation * is not associative.

(ii) On Q, the operation * is defined as * b = a2 + b2.

For a, b ∈ Q, we have:

`a* b  = a^2 + b^2 = b^2 +  a^2 = b * a`

a * b = b * a

Thus, the operation * is commutative.

It can be observed that:
(1*2)*3 =(12 + 22)*3 = (1+4)*3 = 5*3 = 52+32= 25 + 9 = 34
1*(2*3)=1*(22+32) = 1*(4+9) = 1*13 = 12+ 132 = 1 + 169 = 170
∴ (1*2)*3 ≠ 1*(2*3) , where 1, 2, 3 ∈ Q

Thus, the operation * is not associative.

(iii) On Q, the operation * is defined as * b = a + ab.

It can be observed that:

`1 *2 = 1 + 1 xx 2 = 1 + 2 = 3` 

`2 * 1 = 2 + 2 xx 1 = 2 + 2 =4`

`:. 1 * 2 != 2 *1 where 1, 2 in Q`

Thus, the operation * is not commutative.

It can also be observed that:

`(1 * 2)*3 = (1 +  1 xx 2) * 3 = 3 * 3 = 3 + 3 xx 3 = 3 + 9 = 12`

`1 * (2 * 3) = 1 *(2+2xx3) = 1 + 1 xx 8 = 9`

`:.(1 * 2)*3 != 1 *(2 * 3)` where 1, 2. 3 ∈ Q

Thus, the operation * is not associative.

(iv) On Q, the operation * is defined by a * b = (a − b)2.

For ab ∈ Q, we have:

* b = (a − b)2

* a = (b − a)2 = [− (a − b)]2 = (a − b)2

∴ * b = b * a

Thus, the operation * is commutative.

It can be observed that:

`(1 * 2)*3 = (1 - 2)^2 * 3 = (-1)^2 * 3 = 1 * 3 = (1-3)^2 = (-2)^2 = 4`

`1 * (2 * 3) = 1 * (2 - 3)^2 = 1*(-1)^2 = 1*1 = (1 - 1)^2 = 0`

`:. (1 * 2) * 3 != 1 *(2 * 3)` where 1,2,3 ∈ Q

Thus, the operation * is not associative.

On Q, the operation * is defined as `a * b = "ab"/4`

For ab ∈ Q, we have:

`a * b = "ab"/4 = ba/4 = b * a`

∴ * b = * a

Thus, the operation * is commutative.

For a, b, c ∈ Q, we have:

`(a * b) * c = "ab"/4 * c = ("ab"/4  . c)/4 = "abc"/16`

`a * (b * c) = a * bc/4= (a . "bc"/4)/4  = "abc"/16`

 = ∴(* b) * c = a * (* c)

Thus, the operation * is associative.

(vi) On Q, the operation * is defined as * b = ab2

It can be observed that:

`1/2 * 1/3 = 1/2 . (1/3)^2 = 1/2 . 1/9 = 1/18`

`1/3 * 1/2 =  1/3 . (1/2)^2 = 1/3 . 1/4 = 1/12`

`:. 1/2 * 1/3 != 1/3 * 1/2` where `1/2, 1/3 in Q`

Thus, the operation * is not commutative.

It can also be observed that:

`(1/2 * 1/3) * 1/4 = [1/2.(1/3)^2]* 1/4 = 1/18 * 1/4 =     1/18 . (1/4)^2 = 1/(18xx16)`

`1/2 * (1/3 * 1/4) = 1/2 * [1/3 . (1/4)^2] = 1/2 * 1/48 = 1/2 . (1/48)^2 = 1/(2 xx (48)^2)`

`:. (1/2 * 1/3) * 1/4 != 1/2 (1/3 * 1/4)` where `1/2, 1/3, 1.4 in Q`

Thus, the operation * is not associative.

Hence, the operations defined in (ii), (iv), (v) are commutative and the operation defined in (v) is associative.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.4 [पृष्ठ २५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.4 | Q 9 | पृष्ठ २५

संबंधित प्रश्‍न

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)

Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define ab + 1


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N


Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On Z+, defined * by a * b = ab

Here, Z+ denotes the set of all non-negative integers.


Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by  \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:

Find the invertible elements of Q0 ?


Define an associative binary operation on a set.


Write the identity element for the binary operation * defined on the set R of all real numbers by the rule

\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{  a^2 + b^2} \text{for all a, b } \in R .\]

Write the identity element for * on R.


Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = `"ab"/4` for a, b ∈ Q.


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


Which of the following is not a binary operation on the indicated set?


A binary operation A × A → is said to be associative if:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×