Advertisements
Advertisements
प्रश्न
Let * be a binary operation on the set Q of rational numbers as follows:
(i) a * b = a − b
(ii) a * b = a2 + b2
(iii) a * b = a + ab
(iv) a * b = (a − b)2
(v) a * b = ab/4
(vi) a * b = ab2
Find which of the binary operations are commutative and which are associative.
उत्तर
(i) On Q, the operation * is defined as a * b = a − b.
It can be observed that:
`1/2 * 1/3 = 1/2 - 1/3 = (3-2)/6 = 1/6` " and " `1/3 * 1/2 = 1/3- 1/2 = (2-3)/6 = (-1)/6`
`:. 1/2 * 1/3 != 1/3 * 1/2` where `1/2, 1/3 in Q`
Thus, the operation * is not commutative.
It can also be observed that:
`(1/2 * 1/3) * 1/4 = (1/2 - 1/3) * 1/4 = 1/6 * 1/4 = 1/6 - 1/4 = (2 -3)/12 = (-1)/12`
`1/2 * (1/3 * 1/4) = 1/2 * (1/3 - 1/4) = 1/2 * 1/12 = 1/2 - 1/12 = (6 -1)/12 = 5/12`
`:. (1/2 * 1/3) * 1/4 != 1/2 * (1/3 * 1/4)` where `1/2, 1/3, 1/4 in Q`
Thus, the operation * is not associative.
(ii) On Q, the operation * is defined as a * b = a2 + b2.
For a, b ∈ Q, we have:
`a* b = a^2 + b^2 = b^2 + a^2 = b * a`
∴a * b = b * a
Thus, the operation * is commutative.
It can be observed that:
(1*2)*3 =(12 + 22)*3 = (1+4)*3 = 5*3 = 52+32= 25 + 9 = 34
1*(2*3)=1*(22+32) = 1*(4+9) = 1*13 = 12+ 132 = 1 + 169 = 170
∴ (1*2)*3 ≠ 1*(2*3) , where 1, 2, 3 ∈ Q
Thus, the operation * is not associative.
(iii) On Q, the operation * is defined as a * b = a + ab.
It can be observed that:
`1 *2 = 1 + 1 xx 2 = 1 + 2 = 3`
`2 * 1 = 2 + 2 xx 1 = 2 + 2 =4`
`:. 1 * 2 != 2 *1 where 1, 2 in Q`
Thus, the operation * is not commutative.
It can also be observed that:
`(1 * 2)*3 = (1 + 1 xx 2) * 3 = 3 * 3 = 3 + 3 xx 3 = 3 + 9 = 12`
`1 * (2 * 3) = 1 *(2+2xx3) = 1 + 1 xx 8 = 9`
`:.(1 * 2)*3 != 1 *(2 * 3)` where 1, 2. 3 ∈ Q
Thus, the operation * is not associative.
(iv) On Q, the operation * is defined by a * b = (a − b)2.
For a, b ∈ Q, we have:
a * b = (a − b)2
b * a = (b − a)2 = [− (a − b)]2 = (a − b)2
∴ a * b = b * a
Thus, the operation * is commutative.
It can be observed that:
`(1 * 2)*3 = (1 - 2)^2 * 3 = (-1)^2 * 3 = 1 * 3 = (1-3)^2 = (-2)^2 = 4`
`1 * (2 * 3) = 1 * (2 - 3)^2 = 1*(-1)^2 = 1*1 = (1 - 1)^2 = 0`
`:. (1 * 2) * 3 != 1 *(2 * 3)` where 1,2,3 ∈ Q
Thus, the operation * is not associative.
On Q, the operation * is defined as `a * b = "ab"/4`
For a, b ∈ Q, we have:
`a * b = "ab"/4 = ba/4 = b * a`
∴ a * b = b * a
Thus, the operation * is commutative.
For a, b, c ∈ Q, we have:
`(a * b) * c = "ab"/4 * c = ("ab"/4 . c)/4 = "abc"/16`
`a * (b * c) = a * bc/4= (a . "bc"/4)/4 = "abc"/16`
= ∴(a * b) * c = a * (b * c)
Thus, the operation * is associative.
(vi) On Q, the operation * is defined as a * b = ab2
It can be observed that:
`1/2 * 1/3 = 1/2 . (1/3)^2 = 1/2 . 1/9 = 1/18`
`1/3 * 1/2 = 1/3 . (1/2)^2 = 1/3 . 1/4 = 1/12`
`:. 1/2 * 1/3 != 1/3 * 1/2` where `1/2, 1/3 in Q`
Thus, the operation * is not commutative.
It can also be observed that:
`(1/2 * 1/3) * 1/4 = [1/2.(1/3)^2]* 1/4 = 1/18 * 1/4 = 1/18 . (1/4)^2 = 1/(18xx16)`
`1/2 * (1/3 * 1/4) = 1/2 * [1/3 . (1/4)^2] = 1/2 * 1/48 = 1/2 . (1/48)^2 = 1/(2 xx (48)^2)`
`:. (1/2 * 1/3) * 1/4 != 1/2 (1/3 * 1/4)` where `1/2, 1/3, 1.4 in Q`
Thus, the operation * is not associative.
Hence, the operations defined in (ii), (iv), (v) are commutative and the operation defined in (v) is associative.
APPEARS IN
संबंधित प्रश्न
Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10
LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)
Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = ab + 1
Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by a ∨b = min {a, b}. Write the operation table of the operation∨.
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b= a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N
Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = ab
Here, Z+ denotes the set of all non-negative integers.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.
Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:
Find the invertible elements of Q0 ?
Define an associative binary operation on a set.
Write the identity element for the binary operation * defined on the set R of all real numbers by the rule
\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .
If G is the set of all matrices of the form
\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .
For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .
Let * be a binary operation defined on Q+ by the rule
\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .
Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.
If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *
Determine whether * is a binary operation on the sets-given below.
(a * b) = `"a"sqrt("b")` is binary on R
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = `"ab"/4` for a, b ∈ Q.
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.
Which of the following is not a binary operation on the indicated set?
A binary operation A × A → is said to be associative if:-