Advertisements
Advertisements
प्रश्न
Write the identity element for the binary operation * defined on the set R of all real numbers by the rule
\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?
उत्तर
Let e be the identity element in R with respect to * such that
\[a * e = a = e * a, \forall a \in R\]
\[a * e = a \text{ and }e * a = a, \forall a \in R\]
\[\text{ Then }, \]
\[\frac{3ae}{7} = a \text { and }\frac{3ea}{7} = a, \forall a \in R\]
\[e = \frac{7}{3} , \forall a \in R\]
Thus, \[\frac{7}{3}\] is the identity element in R with respect to *.
APPEARS IN
संबंधित प्रश्न
Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.
(iii)and hence write the inverse of elements (5, 3) and (1/2,4)
Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.
On Z+, define ∗ by a ∗ b = a – b
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = a
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = ab + 1
Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)
Show that * is commutative and associative. Find the identity element for * on A, if any.
State whether the following statements are true or false. Justify.
For an arbitrary binary operation * on a set N, a * a = ∀ a a * N.
Consider a binary operation * on N defined as a * b = a3 + b3. Choose the correct answer.
(A) Is * both associative and commutative?
(B) Is * commutative but not associative?
(C) Is * associative but not commutative?
(D) Is * neither commutative nor associative?
Consider the binary operations*: R ×R → and o: R × R → R defined as a * b = |a - b| and ao b = a, &mnForE;a, b ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;a, b, c ∈ R, a*(b o c) = (a* b) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define * by a * b = a + 4b2
Here, Z+ denotes the set of all non-negative integers.
Let S = {a, b, c}. Find the total number of binary operations on S.
Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all a, b ∈ N ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.
Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]
Show that * is commutative as well as associative. Also, find its identity element if it exists.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the invertible elements in A ?
Construct the composition table for ×4 on set S = {0, 1, 2, 3}.
Define a commutative binary operation on a set.
Define an associative binary operation on a set.
Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.
Mark the correct alternative in the following question:-
For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .
If G is the set of all matrices of the form
\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .
Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .
Let * be a binary operation on N defined by a * b = a + b + 10 for all a, b ∈ N. The identity element for * in N is _____________ .
Let * be a binary operation defined on Q+ by the rule
\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .
The number of binary operation that can be defined on a set of 2 elements is _________ .
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
Determine whether * is a binary operation on the sets-given below.
(a * b) = `"a"sqrt("b")` is binary on R
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M
Choose the correct alternative:
Which one of the following is a binary operation on N?
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
A binary operation on a set has always the identity element.
Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.