मराठी

On Z, the Set of All Integers, a Binary Operation * is Defined by a * B = a + 3b − 4. Prove that * is Neither Commutative Nor Associative on Z. - Mathematics

Advertisements
Advertisements

प्रश्न

On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.

बेरीज

उत्तर

Commutativity:

\[\text{Let a}, b \in Z . \text{Then}, \] 
\[a * b = a + 3b - 4\] 
\[b * a = b + 3a - 4\] 
\[a * b \neq b * a\] 
\[\text{Let }a = 1, b = 2\] 
\[1 * 2 = 1 + 6 - 4\] 
         \[ = 3\] 
\[2 * 1 = 2 + 3 - 4\] 
         \[ = 1\] 
\[\text{Therefore}, \exists \text{ a} = 1, b = 2 \in \text{Z such that a} * b \neq b * a\]

Thus, * is not commutative on Z.

Associativity:

\[\text{Let a}, b, c \in Z . \text{Then}, \] 
\[a * \left( b * c \right) = a * \left( b + 3c - 4 \right)\] 
              \[ = a + 3\left( b + 3c - 4 \right) - 4\] 
              \[ = a + 3b + 9c - 12 - 4\] 
              \[ = a + 3b + 9c - 16\] 
 \[\left( a * b \right) * c = \left( a + 3b - 4 \right) * c\] 
                 \[ = a + 3b - 4 + 3c - 4\] 
                 \[ = a + 3b + 3c - 8\] 
\[\text{Thus, a} * \left( b * c \right) \neq \left( a * b \right) * c\] 
\[\text{ If a } = 1, b = 2, c = 3\] 
\[1 * \left( 2 * 3 \right) = 1 * \left( 2 + 9 - 4 \right)\] \[ = 1 * 7 \] 
              \[ = 1 + 21 - 4\] 
              \[ = 18\] 
\[\left( 1 * 2 \right) * 3 = \left( 1 + 6 - 4 \right) * 3\] 
                  \[ = 3 * 3\] 
                   \[ = 3 + 9 - 4\] 
                   \[ = 8\] 
\[\text{Therefore}, \exists \text{ a} = 1, b = 2, c = 3 \in \text{Z such that a } * \left( b * c \right) \neq \left( a * b \right) * c\]

Thus, * is not associative on Z.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.2 | Q 10 | पृष्ठ १२

संबंधित प्रश्‍न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.

On Z+, define ∗ by a ∗ b = a – b


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


Find which of the operations given above has identity.


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Number of binary operations on the set {ab} are

(A) 10

(B) 16

(C) 20

(D) 8


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


On the set Z of all integers a binary operation * is defined by a * b = a + b + 2 for all ab ∈ Z. Write the inverse of 4.


Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]

Write the value of x given by 2 * (x * 5) = 10.


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C


Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


Choose the correct alternative:

Subtraction is not a binary operation in


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×