Advertisements
Advertisements
प्रश्न
Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.
उत्तर
Given: a * b = HCF (a, b)
Here,
22 * 4 = HCF (22, 4)
= 2 [because highest common factor of 22 and 4 is 2]
APPEARS IN
संबंधित प्रश्न
LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)
Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = |a − b|
Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N
(v) Which elements of N are invertible for the operation *?
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Number of binary operations on the set {a, b} are
(A) 10
(B) 16
(C) 20
(D) 8
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N
Determine whether the following operation define a binary operation on the given set or not :
\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]
Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.
Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?
Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operation '*' on R defined by a * b = a + b − 7 for all a, b ∈ R ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Show that '⊙' is commutative and associative on A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Show that '*' is both commutative and associative on A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.
Write the total number of binary operations on a set consisting of two elements.
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .
The law a + b = b + a is called _________________ .
Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
Determine whether * is a binary operation on the sets-given below.
(a * b) = `"a"sqrt("b")` is binary on R
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Fill in the following table so that the binary operation * on A = {a, b, c} is commutative.
* | a | b | c |
a | b | ||
b | c | b | a |
c | a | c |
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C
Choose the correct alternative:
A binary operation on a set S is a function from
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.
Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.
a * b = `((a + b))/2` ∀a, b ∈ N is
Subtraction and division are not binary operation on.