मराठी

Let a = Q X Q and Let * Be a Binary Operation on a Defined by (A, B) * (C, D) = (Ac, B + Ad) for (A, B), (C, D) ∈ A. Determine, Whether * is Commutative and Associative. Then, with Respect to * on - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.

उत्तर १

(a, b) * (c, d) = (ac, b + ad)

(c, d) * (a, b) = (ca, d + cf)

Not commutative

(a, b) * [(c, d) * (e, f)]

= (a, b) * [ce, d + cf]

= [ace, b + ad + acf]

Now,
[(a, b) * (c, d)] * (e, f)

= [ac, b + ad] * (e, f)

= [ace, b + ad + acf]

∴ Associative

∵ (a, b) * [(c, d) * (e, f)]= [(a, b)] * [(c, d) * (e, f)]

1) (a, b) * e = (a, b)

⇒ a = ac

⇒ c = 1 and b = b + ad ⇒ ad = 0

⇒ d = 0

∴ (a, b) * (1, 0) = (a, b + a × 0) = (a, b)

⇒ (1,0) is identify

2) (a, b) * (c, d) = e = (1, 0)

⇒ ac = 1 and b + ad = 0

⇒ `d = (-b)/a`

∴ Inverse of element

∴ Inverse of element of a, b is `(1/a, (-b)/a)`

shaalaa.com

उत्तर २

Let A=Q×Q and * be a binary operation on A defined by (ab) * (cd) = (acb + ad) for (ab), (cd)A.

Commutativity:

Let X = (a, b) and Y = (c, d) ∈ A,∀ a, c ∈ Q and b, d ∈ Q. Then,

X * Y =(ac, b + ad)

Y * X=(ca, d + cb)

Therefore, X * Y ≠ Y * X ∀ X,Y∈A

Thus, * is not commutative on A.

Associativity:

Let X = (a, b), Y = (c, d) and Z=( e, f),∀ a, c, e ∈ Q and b, d, f ∈ Q

X*(Y*Z)=(a, b)*(ce, d+cf)

=(ace, b + ad + acf)

(X * Y)* Z=(ac, b + ad)*(e,f)

= (ace, b + ad + acf)

∴ X*(Y * Z) = (X * Y)*Z, ∀ X, Y, Z ∈ A

Thus,* is associative on A.

1)  Let (x, y) be the identity element in A with respect to *, ∈ Q and ∈ Q such that

X, ∈ A

⇒ X and X

(ax, ay)=(a, b) and (xa, xb(a, b)

Considering (ax, b+ay)=(a, b)

⇒ aa     

⇒ 1   and  ab

⇒ 0                 

Considering (xa, xb(a, b)

⇒ xa

⇒ and xb

0               [ x=1]

∴ (1, 0) is the identity element in A with respect to *.

Let F = (m, n) be the inverse in A∀ m ∈ Q and n ∈ Q

X * F = E and F * X = E

⇒(am, b + an) = (1, 0) and (ma, n + mb) = (1, 0)

Considering (am, b + an)=(1, 0)

⇒ am = 1

⇒m = 1/a and b + an = 0

`=> n = (-b)/a`

Considering (ma, n+mb)=(1, 0)

⇒ ma = 1

`=> m = 1/a and n + mb = 0`

`=> n = (-b)/a`   [∵ m = 1/a]

∴ The inverse of (a, b∈ A with respect to * is `(1/a, (-b)/a)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) All India Set 1

संबंधित प्रश्‍न

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define = 2ab


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


Let * be a binary operation on the set of rational numbers as follows:

(i) − 

(ii) a2 + b2

(iii) ab 

(iv) = (− b)2

(v) a * b = ab/4

(vi) ab2

Find which of the binary operations are commutative and which are associative.


Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; AB in P(X) is the power set of X. Show that is the identity element for this operation and is the only invertible element in P(X) with respect to the operation*.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On Z+, defined * by a * b = ab

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define * by a * b = a + 4b2

Here, Z+ denotes the set of all non-negative integers.


Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Define an associative binary operation on a set.


For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.


Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×