मराठी

Given a Non-empty Set X, Consider the Binary Operation *: P(X) × P(X) → P(X) Given By A * B = A ∩ B andMnfore; A, B In P(X) is the Power Set Of X. Show That X Is the Identity Element for this Operation And X Is the Only Invertible Element in P(X) with Respect to the Operation*. - Mathematics

Advertisements
Advertisements

प्रश्न

Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; AB in P(X) is the power set of X. Show that is the identity element for this operation and is the only invertible element in P(X) with respect to the operation*.

उत्तर

It is given that .:`P(X) x P(X) -> P(X)` is defined as `A * B = A "∩" B ∀ A, B in  P(X) `

We know that  A ∩ X =  A = X ∩ A ∀ A ∈ P(X)

`=> A * X = A = X * A ∀ A ∈ P(X)` 

Thus, X is the identity element for the given binary operation *.

Now, an elementis A ∈ P(X)invertible if there exists B ∈ P(X) such that

A * B = X = B * A (As X is the identity element)

i.e

A ∩ B = X = B ∩ A

This case is possible only when A = X = B.

Thus, X is the only invertible element in P(X) with respect to the given operation*.

Hence, the given result is proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.5 [पृष्ठ ३०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.5 | Q 9 | पृष्ठ ३०

संबंधित प्रश्‍न

Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Find which of the operations given above has identity.


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all ab ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Find the invertible elements in A ?


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Define a commutative binary operation on a set.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .


Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .


Determine whether * is a binary operation on the sets-given below.

a * b – a.|b| on R


Fill in the following table so that the binary operation * on A = {a, b, c} is commutative.

* a b c
a b    
b c b a
c a   c

Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


A binary operation A × A → is said to be associative if:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×