मराठी

Let a = R0 × R, Where R0 Denote the Set of All Non-zero Real Numbers. a Binary Operation '⊙' is Defined on a as Follows (A, B) ⊙ (C, D) = (Ac, Bc + D) for All (A, B), (C, D) ∈ R0 × R : Find the - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 

उत्तर

\[\text{Let} E = (x, y) \text{be the identity element in A with respect to} \odot , \forall x \in R_0 \text{ & } y \in \text{R such that} \] 
\[X \odot E = X = E \odot X, \forall X \in A\] 
\[ \Rightarrow X \odot E = X \text{ and } E \odot X = X\] 
\[ \Rightarrow \left( ax, bx + y \right) = \left( a, b \right) and \left( xa, ya + b \right) = \left( a, b \right)\] 

\[\text{ Considering } \left( ax, bx + y \right) = \left( a, b \right)\] 
\[ \Rightarrow ax = a \] 
\[ \Rightarrow x = 1 \] 
\[ \text{ & }bx + y = b\] 
\[ \Rightarrow y = 0 \left[ \because x = 1 \right]\] 
\[\text{Considering} \left( xa, ya + b \right) = \left( a, b \right)\] \[ \Rightarrow xa = a\] 
\[ \Rightarrow x = 1\] 
\[\text{ & }  ya + b = b\] 
\[ \Rightarrow y = 0 \left[ \because x = 1 \right]\] 
\[ \therefore \left( 1, 0 \right) \text{is the identity element in A with respect to }\odot .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.4 | Q 4.2 | पृष्ठ २५

संबंधित प्रश्‍न

LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)

Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define ab + 1


Consider a binary operation * on defined as a3 + b3. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :

 Find the identity element in Q0.


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


Find the inverse of 5 under multiplication modulo 11 on Z11.


Write the identity element for the binary operation * defined on the set R of all real numbers by the rule

\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?


Define identity element for a binary operation defined on a set.


If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


Subtraction of integers is ___________________ .


The law a + b = b + a is called _________________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.


Choose the correct alternative:

If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.


Which of the following is not a binary operation on the indicated set?


Subtraction and division are not binary operation on.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×