Advertisements
Advertisements
प्रश्न
If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.
उत्तर
Let e be the identity element in Z with respect to * such that
\[a * e = a = e * a, \forall a \in Z\]
\[a * e = a \text{ and }e * a = a, \forall a \in Z\]
\[a + e - 5 = a \text{ and } e + a - 5 = a, \forall a \in Z\]
\[e = 5, \forall a \in Z\]
Thus, 5 is the identity element in Z with respect to *.
APPEARS IN
संबंधित प्रश्न
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define * by a * b = a + 4b2
Here, Z+ denotes the set of all non-negative integers.
Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.
The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.
Determine which of the following binary operation is associative and which is commutative : * on N defined by a * b = 1 for all a, b ∈ N ?
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?
If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :
Find the identity element in Q0.
For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.
On the set Z of all integers a binary operation * is defined by a * b = a + b + 2 for all a, b ∈ Z. Write the inverse of 4.
Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]
Write the value of x given by 2 * (x * 5) = 10.
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
On the power set P of a non-empty set A, we define an operation ∆ by
\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]
Then which are of the following statements is true about ∆.
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .
Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .
Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B
Choose the correct alternative:
In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?
Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a – b ∀ a, b ∈ Q
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.
Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA "a, b" in "Q" - {0}` is ____________.
Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.
Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.
a * b = `((a + b))/2` ∀a, b ∈ N is
Subtraction and division are not binary operation on.