मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Let A = (101001011001), B = (010110101001), C = (110101101111) be any three boolean matrices of the same type. Find (A ∧ B) v C - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C

बेरीज

उत्तर

Given boolean matrices

A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`

B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`

C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))`

(A ∧ B) v C = `((0, 0, 0, 0),(0, 0, 0, 0),(1, 0, 0,  1)) vv ((1, 1, 1, 1),(0, 1, 1, 0),(1, 1, 1, 1))`

= `((0 vv 1, 0 vv 1, 0 vv 0, 0 vv 1),(0 vv 0, 0 vv 1, 0 vv 1, 0 vv 0),(1 vv 1, 0 vv 1, 0 vv 1, 1 vv 1))`

= `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Discrete Mathematics - Exercise 12.1 [पृष्ठ २३६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 12 Discrete Mathematics
Exercise 12.1 | Q 8. (iv) | पृष्ठ २३६

संबंधित प्रश्‍न

For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define ab + 1


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N


Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.


Determine which of the following binary operation is associative and which is commutative : * on N defined by a * b = 1 for all a, b ∈ N ?


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Define a commutative binary operation on a set.


Write the identity element for the binary operation * defined on the set R of all real numbers by the rule

\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?


Define identity element for a binary operation defined on a set.


For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


On the power set P of a non-empty set A, we define an operation ∆ by

\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]

Then which are of the following statements is true about ∆.


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×