मराठी

Determine Whether of the Following Operation Define a Binary Operation on the Given Set Or Not : ′ ∗ ′ on Q Defined by a ∗ B = a − 1 B + 1 for All A, B ∈ Q . - Mathematics

Advertisements
Advertisements

प्रश्न

Determine whether the following operation define a binary operation on the given set or not :

\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]

बेरीज

उत्तर

If a = 2 and b = \[-\] 1 in Q,

\[a * b = \frac{a - 1}{b + 1}\] 
\[ = \frac{2 - 1}{- 1 + 1}\] 
\[ = \frac{1}{0} \left[ \text{ which is not defined } \right]\] 
\[\Rightarrow \text{ Fora} = 2 \text{ and }b = - 1, \] 
\[a * b \not\in Q\]
So, * is not a binary operation on Q.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Binary Operations - Exercise 3.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 3 Binary Operations
Exercise 3.1 | Q 1.7 | पृष्ठ ४

संबंधित प्रश्‍न

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by ab


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by = |− b|


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


If a * b denotes the larger of 'a' and 'b' and if a∘b = (a * b) + 3, then write the value of (5)∘(10), where * and ∘ are binary operations.


Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On Z+, defined * by a * b = ab

Here, Z+ denotes the set of all non-negative integers.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this. 

On Z+ define * by a * b = |a − b|

Here, Z+ denotes the set of all non-negative integers.


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Find the invertible elements in A ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Show that '*' is both commutative and associative on A ?


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C


Choose the correct alternative:

In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×