मराठी

Let * be a binary operation defined on Q. Find which of the following binary operations are associative a * b = a – b + ab for a, b ∈ Q - Mathematics

Advertisements
Advertisements

प्रश्न

Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q

बेरीज

उत्तर

* is not associative for if we take a = 2, b = 3 and c = 4

Then (a * b) * c = (2 * 3) * 4 = (2 – 3 + 6) * 4 = 5 * 4 = 5 – 4 + 20 = 21

And a * (b * c) = 2 * (3 * 4) = 2 * (3 – 4 + 12) = 2 * 11 = 2 – 11 + 22 = 13

Thus (a * b) * c ≠ a * (b * c) and hence * is not associative.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations And Functions - Solved Examples [पृष्ठ ८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 1 Relations And Functions
Solved Examples | Q 16. (iii) | पृष्ठ ८

संबंधित प्रश्‍न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


State whether the following statements are true or false. Justify.

If * is a commutative binary operation on N, then * (c) = (b) * a


Number of binary operations on the set {ab} are

(A) 10

(B) 16

(C) 20

(D) 8


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine which of the following binary operation is associative and which is commutative : * on N defined by a * b = 1 for all a, b ∈ N ?


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all ab ∈ N ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Find the inverse of 5 under multiplication modulo 11 on Z11.


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


Mark the correct alternative in the following question:-

For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\]  for all ab ∈ Z. Then the property satisfied is _______________ .


For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .


Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.


Determine whether * is a binary operation on the sets-given below.

a * b – a.|b| on R


Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×