Advertisements
Advertisements
प्रश्न
Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.
उत्तर
(i) For (a, b), (c, d) ∈ ℝ × ℝ, we have
For any (a, b), (c, d), (e, f) ∈ A, we have
\[\left\{ \left( a, b \right) * \left( c, d \right) \right\} * \left( e, f \right) = \left( ad + bc, bd \right) * \left( e, f \right)\]
\[ = \left( \left( ad + bc \right)f + \left( bd \right)e, \left( bd \right)f \right)\]
\[ = \left( adf + bcf + bde, bdf \right) . . . . . (i)\]
And,
\[\left( a, b \right) * \left\{ \left( c, d \right) * \left( e, f \right) \right\} = \left( a, b \right) * \left( cf + de, df \right)\]
\[ = \left( a\left( df \right) + b\left( cf + de \right), b\left( df \right) \right)\]
\[ = \left( adf + bcf + bde, bdf \right) . . . . . (ii)\]
From (i) and (ii), we get
\[\left\{ \left( a, b \right) * \left( c, d \right) \right\} * \left( e, f \right) = \left( a, b \right) * \left\{ \left( c, d \right) * \left( e, f \right) \right\} for all \left( a, b \right), \left( c, d \right), \left( e, f \right) \in \mathbb{R} \times \mathbb{R} = A\]
So, * is associative on A.
(iii)
Let (x, y) be the identity element in A, Then,
\[\left( a, b \right) * \left( x, y \right) = \left( a, b \right) \text { for all a, b }\in \mathbb{R}\]
\[ \Rightarrow \left( ay + bx, by \right) = \left( a, b \right) \text { for all a, b } \in \mathbb{R}\]
\[ \Rightarrow ay + bx =\text { a and by = b for all a, b } \in \mathbb{R}\]
\[ \Rightarrow x = 0, y = 1\]
But, 0 ∉ ℝ.
Therefore, (0, 1) ∉ ℝ × ℝ = A.
Hence there is no identity element in A with respect to binary operation * on A.
APPEARS IN
संबंधित प्रश्न
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Consider a binary operation * on N defined as a * b = a3 + b3. Choose the correct answer.
(A) Is * both associative and commutative?
(B) Is * commutative but not associative?
(C) Is * associative but not commutative?
(D) Is * neither commutative nor associative?
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?
Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?
Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]
Show that * is commutative as well as associative. Also, find its identity element if it exists.
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Show that '*' is both commutative and associative on A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.
Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.
Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
Mark the correct alternative in the following question:-
For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .
Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all a, b ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .
Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .
The number of binary operation that can be defined on a set of 2 elements is _________ .
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a – b ∀ a, b ∈ Q
Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is ____________.
The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA "a, b" in "Q" - {0}` is ____________.