Advertisements
Advertisements
प्रश्न
Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?
उत्तर
\[\text{Let a}, b \in Z . {Then}, \]
\[a * b = 3a + 7b\]
\[b * a = 3b + 7a\]
\[\text{Thus, a} * b \neq b * a\]
\[\text{Let a} = 1 \text{ and } b = 2 \]
\[1 * 2 = 3 \times 1 + 7 \times 2\]
\[ = 3 + 14\]
\[ = 17\]
\[2 * 1 = 3 \times 2 + 7 \times 1\]
\[ = 6 + 7\]
\[ = 13\]
\[\text{Therefore}, \exists \text{ a} = 1; b = 2 \in \text{Z such that} a * b \neq b * a\]
Thus, * is not commutative on Z.
APPEARS IN
संबंधित प्रश्न
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = a
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b= a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.
Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N
Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = ab
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+ define * by a * b = |a − b|
Here, Z+ denotes the set of all non-negative integers.
The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Show that '*' is both commutative and associative on A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
Find the inverse of 5 under multiplication modulo 11 on Z11.
Consider the binary operation 'o' defined by the following tables on set S = {a, b, c, d}.
o | a | b | c | d |
a | a | a | a | a |
b | a | b | c | d |
c | a | c | d | b |
d | a | d | b | c |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
On the set Z of all integers a binary operation * is defined by a * b = a + b + 2 for all a, b ∈ Z. Write the inverse of 4.
Define a binary operation on a set.
Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]
Write the value of x given by 2 * (x * 5) = 10.
Define identity element for a binary operation defined on a set.
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .
Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .
Let * be a binary operation on N defined by a * b = a + b + 10 for all a, b ∈ N. The identity element for * in N is _____________ .
Let * be a binary operation defined on Q+ by the rule
\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.
Choose the correct alternative:
In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
a * b = `((a + b))/2` ∀a, b ∈ N is