Advertisements
Advertisements
Question
Determine whether the following operation define a binary operation on the given set or not :
\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]
Solution
If a = 2 and b = \[-\] 1 in Q,
\[ = \frac{2 - 1}{- 1 + 1}\]
\[ = \frac{1}{0} \left[ \text{ which is not defined } \right]\]
\[\Rightarrow \text{ Fora} = 2 \text{ and }b = - 1, \]
\[a * b \not\in Q\]
APPEARS IN
RELATED QUESTIONS
Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.
(iii)and hence write the inverse of elements (5, 3) and (1/2,4)
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = a
Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N
(v) Which elements of N are invertible for the operation *?
Find which of the operations given above has identity.
Number of binary operations on the set {a, b} are
(A) 10
(B) 16
(C) 20
(D) 8
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+ define * by a * b = |a − b|
Here, Z+ denotes the set of all non-negative integers.
Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.
Determine which of the following binary operation is associative and which is commutative : * on N defined by a * b = 1 for all a, b ∈ N ?
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?
On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.
Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.
Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]
Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all a, b ∈ R0.
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.
Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all a, b ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .
Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ________________ .
Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .
For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .
The number of binary operation that can be defined on a set of 2 elements is _________ .
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M
Choose the correct alternative:
Subtraction is not a binary operation in
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = a – b + ab for a, b ∈ Q
If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then" 3 "*" (1/5 "*" 1/2)` is equal to ____________.
If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.
Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.
Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.
Determine which of the following binary operation on the Set N are associate and commutaive both.
Subtraction and division are not binary operation on.