English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Let M = R{(xxxx):x∈R-{0}} and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation - Mathematics

Advertisements
Advertisements

Question

Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M

Sum

Solution

Identity axiom:

Let E = `(("e", "e"),("e", "e")) ∈ "M"` be such that

AR = A for any A ∈ M

Then AE = A gives `((x, x),(x, x)) (("e", "e"),("e", e")) = ((x, x),(x, x))`

.i.e. `((2x"e", 2x"e"),(2x"e", 2x"e")) = ((x, x),(x, x))` and so 2xe = x

⇒ e = `1/2`

Thus E = `((1/2, 1/2),(1/2, 1/2))` in M

Also, we can show that EA = A

Hence E is the identity element in M

Let B = `(("y", "y"),("y", "y")) ∈ "M"` be such that `((y, y),(y, y))` A = E

Then `((y, y),(y, y))((x, x),(x, x)) = ((1/2, 1/2),(1/2, 1/2))`

⇒ `((2xy, 2xy),(2xy, 2xy)) = ((1/2, 1/2),(1/2, 1/2))`

Hence 2xy = `1/2`

⇒ y = `1/(4x)`

This shows that BA = E

Similarly AB = E

i.e. B = `((1/(4x), 1/(4x)),(1/(4x), 1/(4x)))` is the inverse of A ∈ M

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Discrete Mathematics - Exercise 12.1 [Page 236]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 12 Discrete Mathematics
Exercise 12.1 | Q 9. (ii) | Page 236

RELATED QUESTIONS

Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Show that '⊙' is commutative and associative on A ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×