Advertisements
Advertisements
Question
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Solution
Commutativity:
The table is symmetrical about the leading element. It means * is commutative on S.
Associativity:
\[a * \left( b * c \right) = a * d\]
\[ = d\]
\[\left( a * b \right) * c = b * c\]
\[ = d\]
\[\text{Therefore},\]
\[a * \left( b * c \right) = \left( a * b \right) * c \forall a, b, c \in S\]
So, * is associative on S.
Finding identity element :-
We observe that the first row of the composition table coincides with the top-most row and the first column coincides with the left-most column.
These two intersect at a.
\[\Rightarrow x * a = a * x = x, \forall x \in S\]
So, a is the identity element.
Finding inverse elements :-
\[a * a = a\]
\[ \Rightarrow a^{- 1} = a\]
\[b * b = a\]
\[ \Rightarrow b^{- 1} = b\]
\[c * c = a\]
\[ \Rightarrow c^{- 1} = c\]
\[d * d = a\]
\[ \Rightarrow d^{- 1} = d\]
APPEARS IN
RELATED QUESTIONS
Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10
Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = ab + 1
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = `(ab)/2`
Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
Consider the binary operations*: R ×R → and o: R × R → R defined as a * b = |a - b| and ao b = a, &mnForE;a, b ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;a, b, c ∈ R, a*(b o c) = (a* b) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.
Let * be a binary operation on N given by a * b = LCM (a, b) for all a, b ∈ N. Find 5 * 7.
Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N
Check the commutativity and associativity of '*' on N.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all a, b ∈ N ?
The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is a binary operation on S ?
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:
Find the invertible elements of Q0 ?
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.
For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.
Define a binary operation on a set.
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
Mark the correct alternative in the following question:-
For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .
If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .
If G is the set of all matrices of the form
\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .
An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\] for all a, b ∈ Z. Then the property satisfied is _______________ .
The number of binary operation that can be defined on a set of 2 elements is _________ .
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
Choose the correct alternative:
Subtraction is not a binary operation in
In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = `"ab"/4` for a, b ∈ Q.
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
a * b = `((a + b))/2` ∀a, b ∈ N is