English

If G is the Set of All Matrices of the Form [ X X X X ] , Where X ∈ R − { 0 } Then the Identity Element with Respect to the Multiplication of Matrices as Binary Operation, is - Mathematics

Advertisements
Advertisements

Question

If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .

Options

  • \[\begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\]

  • \[\begin{bmatrix}- 1/2 & - 1/2 \\ - 1/2 & - 1/2\end{bmatrix}\]

  • \[\begin{bmatrix}1/2 & 1/1 \\ 1/2 & 1/2\end{bmatrix}\]

  • \[\begin{bmatrix}- 1 & - 1 \\ - 1 & - 1\end{bmatrix}\]

MCQ

Solution

\[\text{ Let }\begin{bmatrix}x & x \\ x & x\end{bmatrix}\in G \text{ and }\begin{bmatrix}e & e \\ e & e\end{bmatrix}\in G \text{ such that }\]
\[\begin{bmatrix}x & x \\ x & x\end{bmatrix} \begin{bmatrix}e & e \\ e & e\end{bmatrix} = = \begin{bmatrix}x & x \\ x & x\end{bmatrix} = \begin{bmatrix}e & e \\ e & e\end{bmatrix}\begin{bmatrix}x & x \\ x & x\end{bmatrix}\]
\[\begin{bmatrix}x & x \\ x & x\end{bmatrix} \begin{bmatrix}e & e \\ e & e\end{bmatrix} = \begin{bmatrix}x & x \\ x & x\end{bmatrix}\]
\[\begin{bmatrix}2ex & 2ex \\ 2ex & 2ex\end{bmatrix} = \begin{bmatrix}x & x \\ x & x\end{bmatrix}\]
\[2ex = x\]
\[e = \frac{1}{2} \in R - \left\{ 0 \right\}\]
\[\text{ Thus },\begin{bmatrix}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{bmatrix}\in G,\text{  is the identity element in G} .\]

shaalaa.com

Notes

The question in the book has some error, so, none of the options are matching with the solution. The solution is created according to the question given in the book.

  Is there an error in this question or solution?
Chapter 3: Binary Operations - Exercise 3.7 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 3 Binary Operations
Exercise 3.7 | Q 8 | Page 37

RELATED QUESTIONS

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)

Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.


State whether the following statements are true or false. Justify.

If * is a commutative binary operation on N, then * (c) = (b) * a


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation  '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


The law a + b = b + a is called _________________ .


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


Determine whether * is a binary operation on the sets-given below.

a * b – a.|b| on R


Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


Choose the correct alternative:

In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


A binary operation on a set has always the identity element.


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


Which of the following is not a binary operation on the indicated set?


A binary operation A × A → is said to be associative if:-


Subtraction and division are not binary operation on.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×