English

Write the Identity Element for the Binary Operation * on the Set R0 of All Non-zero Real Numbers by the Rule a ∗ B = a B 2 for All A, B ∈ R0. - Mathematics

Advertisements
Advertisements

Question

Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.

Solution

Let e be the identity element in R0 with respect to * such that

\[a * e = a = e * a, \forall a \in R_0 \]
\[a * e = a \text{ and } e * a = a, \forall a \in R_0 \]
\[\text{Then} , \]
\[\frac{ae}{2} = a \text{ and }\frac{ea}{2} = a, \forall a \in R_0 \]
\[ae = 2a, \forall a \in R_0 \]
\[a\left( e - 2 \right) = 0, \forall a \in R_0 \]
\[e - 2 = 0, \forall a \in R_0 (\because a\neq0)\]
\[e = 2 \in R_0\]

Thus, 2 is the identity element in R0 with respect to *.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Binary Operations - Exercise 3.6 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 3 Binary Operations
Exercise 3.6 | Q 1 | Page 35

RELATED QUESTIONS

LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)

Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.


Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by ab


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by = |− b|


For each binary operation * defined below, determine whether * is commutative or associative.

On Z, define − b


For each binary operation * defined below, determine whether * is commutative or associative.

On − {−1}, define `a*b = a/(b+1)`


Consider a binary operation * on defined as a3 + b3. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?


Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

a * b = `{(a+b, "if a+b < 6"), (a + b - 6, if a +b >= 6):}`

Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define * by a * b = a + 4b2

Here, Z+ denotes the set of all non-negative integers.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Show that '⊙' is commutative and associative on A ?


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .


Which of the following is true ?


The binary operation * is defined by a * b = a2 + b2 + ab + 1, then (2 * 3) * 2 is equal to ______________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


Choose the correct alternative:

A binary operation on a set S is a function from


Choose the correct alternative:

If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


A binary operation on a set has always the identity element.


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.


a * b = `((a + b))/2` ∀a, b ∈ N is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×