English

Examine Whether the Operation *Defined on R by a * B = Ab + 1 is (I) a Binary Or Not. (Ii) If a Binary Operation, is It Associative Or Not? - Mathematics

Advertisements
Advertisements

Question

Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?

Sum

Solution

The given operation is a * b = ab + 1

If any operation is a binary operation then it must follow the closure property.

Let a∈ R, b∈ R
then a*b∈ R
also ab +1 ∈ R
i.e. a *b ∈ R
so * on R satisfies the closure property

Now if this binary operation satisfies associative law then
(a * b) * c = a * (b * c)
(a * b) * c = (ab + 1) * c
= (ab +1) c + 1
= abc + c + 1


a * (b * c) = a * (bc + 1)
= a(bc + 1) + 1
= abc + a + 1

(a * b) * c ≠ a * (b * c)

i.e., * operation does not follow associative law.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/1/3

RELATED QUESTIONS

For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define ab + 1


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N


Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all ab ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?


Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?


Find the inverse of 5 under multiplication modulo 11 on Z11.


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.


Define a binary operation on a set.


Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]

Write the value of x given by 2 * (x * 5) = 10.


Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .


Which of the following is true ?


Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a – b ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


A binary operation on a set has always the identity element.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.


a * b = `((a + b))/2` ∀a, b ∈ N is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×