English

Let S Be the Set of All Real Numbers Except −1 and Let '*' Be an Operation Defined By A * B = A + B + Ab For All A, B ∈ S. Determine Whether '*' is a Binary Operation On S. - Mathematics

Advertisements
Advertisements

Question

Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all ab ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.

Sum

Solution

Checking for binary operation:

\[\text{Let }a, b \in S . \text{Then}, \]

\[a, b \in \text{R and a} \neq - 1, b \neq - 1\]

\[a * b = a + b + ab\]

\[\text{We need to prove thata} + b + ab \in S . \left[ \text{For this we have to prove thata} + b + ab \in \text{ R and a } + b + ab \neq - 1 \right]\]

\[\text{Since a, b} \in R, a + b + ab \in R, \text{let us assume thata} + b + ab = - 1 . \]

\[a + b + ab + 1 = 0\]

\[a + ab + b + 1 = 0\]

\[a\left( 1 + b \right) + 1\left( 1 + b \right) = 0\]

\[\left( a + 1 \right)\left( b + 1 \right) = 0\]

\[a = - 1, b = - 1 \left[ \text{which is false} \right]\]

\[\text{Hence},a + b + ab \neq - 1\]

\[\text{Therefore},\]

\[a + b + ab \in S\]

Thus, * is a binary operation on S.

Commutativity:

\[\text{Let }a, b \in S . \text{Then}, \]

\[a * b = a + b + ab\]

        \[ = b + a + ba\]

        \[ = b * a \]

\[\text{Therefore},\]

\[a * b = b * a, \forall a, b \in S\]

Thus, * is commutative on N.

Associativity :

\[\text{Let a}, b, c \in S\]

\[a * \left( b * c \right) = a * \left( b + c + bc \right)\]

\[ = a + b + c + bc + a\left( b + c + bc \right)\]

\[ = a + b + c + bc + ab + ac + abc\]

\[\left( a * b \right) * c = \left( a + b + ab \right) * c\]

\[ = a + b + ab + c + \left( a + b + ab \right)c\]

\[ = a + b + ab + c + ac + bc + abc\]

\[\text{Therefore},\]

\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in S\]

Thus, * is associative on S.

Now,

\[\text{Given}:\hspace{0.167em}\left( 2 * x \right) * 3 = 7\]

\[ \Rightarrow \left( 2 + x + 2x \right) * 3 = 7\]

\[ \Rightarrow \left( 2 + 3x \right) * 3 = 7\]

\[ \Rightarrow 2 + 3x + 3 + \left( 2 + 3x \right)3 = 7\]

\[ \Rightarrow 5 + 3x + 6 + 9x = 7\]

\[ \Rightarrow 12x + 11 = 7\]

\[ \Rightarrow 12x = - 4\]

\[ \Rightarrow x = \frac{- 4}{12}\]

\[ \Rightarrow x = \frac{- 1}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Binary Operations - Exercise 3.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 3 Binary Operations
Exercise 3.2 | Q 8 | Page 12

RELATED QUESTIONS

Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On R, define * by ab2


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by = |− b|


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define a * b  = `(ab)/2`


Let * be a binary operation on the set of rational numbers as follows:

(i) − 

(ii) a2 + b2

(iii) ab 

(iv) = (− b)2

(v) a * b = ab/4

(vi) ab2

Find which of the binary operations are commutative and which are associative.


State whether the following statements are true or false. Justify.

If * is a commutative binary operation on N, then * (c) = (b) * a


Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; AB in P(X) is the power set of X. Show that is the identity element for this operation and is the only invertible element in P(X) with respect to the operation*.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Show that '*' is both commutative and associative on A ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.


Define an associative binary operation on a set.


For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\] 


Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]


Mark the correct alternative in the following question:-

For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


Which of the following is true ?


Subtraction of integers is ___________________ .


The law a + b = b + a is called _________________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Choose the correct alternative:

A binary operation on a set S is a function from


Choose the correct alternative:

In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


A binary operation on a set has always the identity element.


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×