Advertisements
Advertisements
Question
Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all a, b ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.
Solution
Checking for binary operation:
\[\text{Let }a, b \in S . \text{Then}, \]
\[a, b \in \text{R and a} \neq - 1, b \neq - 1\]
\[a * b = a + b + ab\]
\[\text{We need to prove thata} + b + ab \in S . \left[ \text{For this we have to prove thata} + b + ab \in \text{ R and a } + b + ab \neq - 1 \right]\]
\[\text{Since a, b} \in R, a + b + ab \in R, \text{let us assume thata} + b + ab = - 1 . \]
\[a + b + ab + 1 = 0\]
\[a + ab + b + 1 = 0\]
\[a\left( 1 + b \right) + 1\left( 1 + b \right) = 0\]
\[\left( a + 1 \right)\left( b + 1 \right) = 0\]
\[a = - 1, b = - 1 \left[ \text{which is false} \right]\]
\[\text{Hence},a + b + ab \neq - 1\]
\[\text{Therefore},\]
\[a + b + ab \in S\]
Thus, * is a binary operation on S.
Commutativity:
\[\text{Let }a, b \in S . \text{Then}, \]
\[a * b = a + b + ab\]
\[ = b + a + ba\]
\[ = b * a \]
\[\text{Therefore},\]
\[a * b = b * a, \forall a, b \in S\]
Thus, * is commutative on N.
Associativity :
\[\text{Let a}, b, c \in S\]
\[a * \left( b * c \right) = a * \left( b + c + bc \right)\]
\[ = a + b + c + bc + a\left( b + c + bc \right)\]
\[ = a + b + c + bc + ab + ac + abc\]
\[\left( a * b \right) * c = \left( a + b + ab \right) * c\]
\[ = a + b + ab + c + \left( a + b + ab \right)c\]
\[ = a + b + ab + c + ac + bc + abc\]
\[\text{Therefore},\]
\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in S\]
Thus, * is associative on S.
Now,
\[\text{Given}:\hspace{0.167em}\left( 2 * x \right) * 3 = 7\]
\[ \Rightarrow \left( 2 + x + 2x \right) * 3 = 7\]
\[ \Rightarrow \left( 2 + 3x \right) * 3 = 7\]
\[ \Rightarrow 2 + 3x + 3 + \left( 2 + 3x \right)3 = 7\]
\[ \Rightarrow 5 + 3x + 6 + 9x = 7\]
\[ \Rightarrow 12x + 11 = 7\]
\[ \Rightarrow 12x = - 4\]
\[ \Rightarrow x = \frac{- 4}{12}\]
\[ \Rightarrow x = \frac{- 1}{3}\]
APPEARS IN
RELATED QUESTIONS
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = |a − b|
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = `(ab)/2`
Let * be a binary operation on the set Q of rational numbers as follows:
(i) a * b = a − b
(ii) a * b = a2 + b2
(iii) a * b = a + ab
(iv) a * b = (a − b)2
(v) a * b = ab/4
(vi) a * b = ab2
Find which of the binary operations are commutative and which are associative.
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; A, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*.
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.
Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N
Check the commutativity and associativity of '*' on N.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is commutative as well as associative ?
On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Show that '*' is both commutative and associative on A ?
Construct the composition table for ×4 on set S = {0, 1, 2, 3}.
Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.
Define an associative binary operation on a set.
For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\]
Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]
Mark the correct alternative in the following question:-
For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
Which of the following is true ?
Subtraction of integers is ___________________ .
The law a + b = b + a is called _________________ .
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *
Determine whether * is a binary operation on the sets-given below.
(a * b) = `"a"sqrt("b")` is binary on R
Choose the correct alternative:
A binary operation on a set S is a function from
Choose the correct alternative:
In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = (a – b)2 ∀ a, b ∈ Q
A binary operation on a set has always the identity element.
Determine which of the following binary operation on the Set N are associate and commutaive both.