Advertisements
Advertisements
Question
For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\]
Solution
Here,
1 \[\times_5\] 1 = Remainder obtained by dividing 1 × 1 by 5
= 1
3 \[\times_5\] 4 = Remainder obtained by dividing 3 \[\times\] 4 by 5
= 2
4 \[\times_5\] 4 = Remainder obtained by dividing 4 \[\times\] 4 by 5
= 1
So, the composition table is as follows :
×5 | 1 | 2 | 3 | 4 |
1 | 1 | 2 | 3 | 4 |
2 | 2 | 4 | 1 | 3 |
3 | 3 | 1 | 4 | 2 |
4 | 4 | 3 | 2 | 1 |
We observe that the first row of the composition table coincides with the top-most row and the first column coincides with the left-most column.
These two intersect at 1.
\[\Rightarrow a \times_5 1 = 1 \times_5 a = a, \forall a \in S\]
Thus, 1 is the identity element.
\[\text{ Now },\]
\[ \left( 3 \times_5 4^{- 1} \right)^{- 1} \]
\[ = \left( 3 \times_5 4 \right)^{- 1 } \left [ \because 4 \times_5 4 = 1 \right]\]
\[ = 2^{- 1} \]
\[ = 3 \left[ \because 2 \times_5 3 = 1 \right]\]
APPEARS IN
RELATED QUESTIONS
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
Let * be a binary operation on the set Q of rational numbers as follows:
(i) a * b = a − b
(ii) a * b = a2 + b2
(iii) a * b = a + ab
(iv) a * b = (a − b)2
(v) a * b = ab/4
(vi) a * b = ab2
Find which of the binary operations are commutative and which are associative.
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.
Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N
Determine whether or not the definition of *given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = ab
Here, Z+ denotes the set of all non-negative integers.
The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.
Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?
Check the commutativity and associativity of the following binary operation '*' on R defined by a * b = a + b − 7 for all a, b ∈ R ?
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all a, b ∈ Z ?
On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
Construct the composition table for ×4 on set S = {0, 1, 2, 3}.
For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.
Define a binary operation on a set.
Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]
Write the value of x given by 2 * (x * 5) = 10.
Define identity element for a binary operation defined on a set.
Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.
If G is the set of all matrices of the form
\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
Subtraction of integers is ___________________ .
The law a + b = b + a is called _________________ .
Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.
Determine whether * is a binary operation on the sets-given below.
a * b – a.|b| on R
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C
Choose the correct alternative:
A binary operation on a set S is a function from
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = `"ab"/4` for a, b ∈ Q.
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.