Advertisements
Advertisements
Question
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Solution
\[\text{Let} \left( x, y \right) \text{be the identity element in A} \forall \left( x, y \right) \in \text{ A . Then }, \]
\[\left( a, b \right) * \left( x, y \right) = \left( a, b \right) = \left( x, y \right) * \left( a, b \right) \]
\[ \Rightarrow \left( a, b \right) * \left( x, y \right) = \left( a, b \right) \text{ and } \left( x, y \right) * \left( a, b \right) = \left( a, b \right)\]
\[ \Rightarrow \left( ax, by \right) = \left( a, b \right) \text{ and } \left( xa, yb \right) = \left( a, b \right)\]
\[ \Rightarrow x = 1 \text{ and } y = 1 \]
\[\text{Thus }, \left( 1, 1 \right) \text{is the identity element of A } . \]
APPEARS IN
RELATED QUESTIONS
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by a *′ b = H.C.F. of a and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.
State whether the following statements are true or false. Justify.
For an arbitrary binary operation * on a set N, a * a = ∀ a a * N.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+ define * by a * b = |a − b|
Here, Z+ denotes the set of all non-negative integers.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.
Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all a, b ∈ N ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :
Find the identity element in Q0.
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Show that '*' is both commutative and associative on A ?
Construct the composition table for ×4 on set S = {0, 1, 2, 3}.
Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.
Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.
For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
Define identity element for a binary operation defined on a set.
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .
Which of the following is true ?
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ________________ .
For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .
For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M
Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A
Choose the correct alternative:
Which one of the following is a binary operation on N?
In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = `"ab"/4` for a, b ∈ Q.
Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is ____________.
The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.
A binary operation A × A → is said to be associative if:-
a * b = `((a + b))/2` ∀a, b ∈ N is
Subtraction and division are not binary operation on.