Advertisements
Advertisements
Question
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Solution
(a * b) = a + b + ab – 7 ∀ a, b ∈ R
If a ∈ R, b ∈ R then ab ∈ R
∴ (a * b) = a + b + ab – 7 ∈ R
For example,
Let 1, 2 ∈ R
(1 * 2) = 1 + 2 + (1)(2) – 7
= – 2 ∈ R
∴ * is a binary operation on R
Now 3 * `(- 7/15)`
= `3 + (- 7/15) + 3(- 7/15) - 7`
= `3 - 7/15 - 21/15 - 7`
= `- 88/15`
APPEARS IN
RELATED QUESTIONS
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; A, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*.
Determine whether the following operation define a binary operation on the given set or not :
\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+ define * by a * b = |a − b|
Here, Z+ denotes the set of all non-negative integers.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?
Let A \[=\] R \[\times\] R and \[*\] be a binary operation on A defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.
Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.
Write the multiplication table for the set of integers modulo 5.
Write the identity element for the binary operation * defined on the set R of all real numbers by the rule
\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = `"ab"/4` for a, b ∈ Q.
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA "a, b" in "Q" - {0}` is ____________.
Which of the following is not a binary operation on the indicated set?