Advertisements
Advertisements
Question
On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .
Options
commutative and associative
associative but not commutative
not associative
not a binary operation
Solution
not associative
Commutativity:
\[\text{ Leta } , b \in Z . \text{ Then }, \]
\[a * b = a^2 + b^2 \]
\[ = b^2 + a^2 \]
\[ = b * a\]
\[\text{ Therefore },\]
\[a * b b * a, \forall a, b \in Z\]
Thus, * is commutative on Z.
Associativity:
\[\text{ Let }a, b, c \in Z\]
\[a * \left( b * c \right) = a * \left( b^2 + c^2 \right)\]
\[ = a^2 + \left( b^2 + c^2 \right)^2 \]
\[ = a^2 + b^4 + c^4 + 2 b^2 c^2 \]
\[\left( a * b \right) * c = \left( a^2 + b^2 \right) * c\]
\[ = \left( a^2 + b^2 \right)^2 + c^2 \]
\[ = a^4 + b^4 + 2 a^2 b^2 + c^2 \]
\[\text{ Therefore },\]
\[a * \left( b * c \right) \neq \left( a * b \right) * c\]
Thus, * is not associative on Z.
APPEARS IN
RELATED QUESTIONS
LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)
Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = |a − b|
Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
If a * b denotes the larger of 'a' and 'b' and if a∘b = (a * b) + 3, then write the value of (5)∘(10), where * and ∘ are binary operations.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define by a*b = ab2
Here, Z+ denotes the set of all non-negative integers.
Let S = {a, b, c}. Find the total number of binary operations on S.
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all a, b ∈ N ?
If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.
Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all a, b ∈ R0.
Define a commutative binary operation on a set.
Define an associative binary operation on a set.
Write the identity element for the binary operation * defined on the set R of all real numbers by the rule
\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
Mark the correct alternative in the following question:-
For the binary operation * on Z defined by a * b = a + b + 1, the identity element is ________________ .
Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .
Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all a, b ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
Which of the following is true ?
Let * be a binary operation on N defined by a * b = a + b + 10 for all a, b ∈ N. The identity element for * in N is _____________ .
Let * be a binary operation defined on Q+ by the rule
\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.
Choose the correct alternative:
Subtraction is not a binary operation in
Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = (a – b)2 ∀ a, b ∈ Q
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.
The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA "a, b" in "Q" - {0}` is ____________.