English

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible. - Mathematics

Advertisements
Advertisements

Question

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.

Solution

We have ​a*b = a + b + ab for all a, b ∈ A, where A = R – { – 1}
Commutativity: For any a, b ∈ R – { – 1}
To prove: a*b = b*a  
Now, a*b = a + b + ab               .....(1)
b*a = b + a + ab                        .....(2)
From (1) and (2), we get
a*b = b*a 
Hence, * is commutative.

Associative: For any a, b, c ∈ R – { – 1}
To prove: a*(b*c) = (a*b)*c
a*(b*c) = a*(b + c +bc)
             = a + (b + c + bc) + a(b + c + bc)
             = a + b + c + ab + ac + bc + abc           .....(3)
(a*b)*c = (a + b + ab)*c
             = a + b + ab + c + (a + b + ab)c
             = a + b + c + ab + bc + ca + abc            .....(4)
From (3) and (4), we have
a*(b*c) = (a*b)*c
Hence, a*b is associative.

Identity element:
Let e be the identity element. Then,
a*e = e*a = a
a*e = a + e + ae = a
e(1 + a) = 0
Therefore, e = 0            [∵ a ≠ – 1]
Hence, the identity element for* is e = 0.

Existence of inverse: Let a = R – { – 1} and b be the inverse of a. 
Then, a * b = e = b * a
a*b = ea + b + ab = 0b= `−a/(a+1)`


Since,

aR(1)

a1

a+10

`⇒b=−a/(a+1)∈R`

Also, `−a/(a+1)` =1a = a11=0, which is not possible.

Hence, ` −a/(a+1)∈R−(−1)`

So, every element of R – { – 1} is invertible and the inverse of an element a is `−a/(a+1).`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 2 C

RELATED QUESTIONS

For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define ab + 1


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Let * be a binary operation on the set of rational numbers as follows:

(i) − 

(ii) a2 + b2

(iii) ab 

(iv) = (− b)2

(v) a * b = ab/4

(vi) ab2

Find which of the binary operations are commutative and which are associative.


Find which of the operations given above has identity.


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; AB ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).


Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a – b ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


A binary operation A × A → is said to be associative if:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×