English

Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector - Mathematics

Advertisements
Advertisements

Question

Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector

`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.

Solution

Let M be the foot of the perpendicular drawn from the point P(2, 3, 4) in the plane

`(2hati+hatj+3hatk)−26=0 or 2x+y+3z-26=0`

Then, PM is the normal to the plane. So, the direction ratios of PM are proportional to 2, 1, 3.
Since PM passes through P(2, 3, 4) and has direction ratios proportional to 2, 1, 3, so the equation of PM is

`(x−2)/2=(y−3)/1=(z−4)/3=r (say)`

Let the coordinates of M be (2r + 2, r + 3, 3r + 4). Since M lies in the plane 2x + y + 3z − 26 = 0,so

2(2r+2)+r+3+3(3r+4)26=0

4r+4+r+3+9r+1226=0

14r7=0

`⇒r=1/2`

Therefore, the coordinates of M are

`(2r+2, r+3, 3r+4)=(2xx1/2+2, 1/2+3, 3xx1/2+4)=(3, 7/2, 11/2)`

Thus, the position vector of the foot of perpendicular are `3hati+72hatj+112hatk.`


Now,

Length of the perpendicular from P on to the given plane

`=∣(2xx2+1xx3+3xx4−26)/sqrt(4+1+9)∣`

`=7/sqrt14`

`=sqrt(7/2) units`

Let `Q(x_1, y_1, z_1)`

 be the image of point P in the given plane.
Then, the coordinates of M are ` ((x_1+2)/2, (y_1+3)/2, (z_1+4)/2)`

But, the coordinates of M are `(3, 7/2, 11/2)`

`therefore  ((x_1+2)/2, (y_1+3)/2, (z_1+4)/2)=(3, 7/2, 11/2)`

`⇒(x_1+2)/2=3, (y_1+3)/2=7/2, (z_1+4)/2=11/2`

`⇒x_1=4, y_1=4, z_1=7`


Thus, the coordinates of the image of the point P in the given plane are (4, 4, 7).

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 2 C

RELATED QUESTIONS

If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.


Two vectors having the same magnitude are collinear.


Find the direction cosines of the vector `hati + 2hatj + 3hatk`.


Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.


Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).


Show that the points A, B and C with position vectors `veca = 3hati - 4hatj - 4hatk`, `vecb = 2hati - hatj + hatk` and `vecc = hati - 3hatj - 5hatk`, respectively form the vertices of a right angled triangle.


Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of the x-axis.


Let `veca` and `vecb` be two unit vectors, and θ is the angle between them. Then `veca + vecb` is a unit vector if ______.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]


The adjacent sides of a parallelogram are represented by the vectors \[\vec{a} = \hat{i} + \hat{j} - \hat{k}\text{ and }\vec{b} = - 2 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find unit vectors parallel to the diagonals of the parallelogram.


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


\[\text{If }\vec{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \vec{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}\text{ and }\vec{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \vec{a} - 2 \vec{b} + 4 \vec{c} \right| .\]

 


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of  \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\]  where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\]  is perpendicular to \[\vec{\alpha}\]


Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle. 


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).


Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.


If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.


Position vector of a point P is a vector whose initial point is origin.


Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, internally the ratio 2:1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×