English

Show that the Vector ^ I + ^ J + ^ K is Equally Inclined to the Coordinate Axes. - Mathematics

Advertisements
Advertisements

Question

Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 

Sum

Solution

\[\text{ Let } \theta_1 \text{ be the angle between } \vec{a} \text{ and } x - axis.\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]

\[ \vec{b} = \hat{i} .........................\text{ (Because } \ \hat{i} \text{ is the unit vector along }x-axis)\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 1 + 0 + 0 = 1\]

\[\cos \theta_1 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow \theta_1 = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 1 \right)\]

\[\]

\[\text{ Let } \theta_2 \text{ be the angle between } \vec{a} \ \text{ and } y - \text{ axis }\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]

\[ \vec{b} = \hat{j} ........................... \text { (Because } \hat{j}\ \text{ is the unit vector along }y-\text{ axis) }\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 0 + 1 + 0 = 1\]

\[\cos \theta_2 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow \theta_2 = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 2 \right)\]

\[\text{ Let } \theta_3 \text{ be the angle between } \vec{a} \text{ and } z - \text{ axis }.\] 

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]

\[ \vec{b} = \hat{k}.................................. { (Because } \ \hat{k}\ \text{ is the unit vector along }z-\text{ axis })\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 0 + 0 + 1 = 1\]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 3 \right)\]

\[\text{ From } (1), (2) \text{ and } (3), \text{ the given vector is equally inclined to the coordinate axes }.\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.1 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.1 | Q 12 | Page 30

RELATED QUESTIONS

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.


If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment  AB.


Find the position vector of a point which divides the join of points with position vectors `veca-2vecb" and "2veca+vecb`externally in the ratio 2 : 1


Classify the following measures as scalar and vector.

10 kg


Two collinear vectors are always equal in magnitude.


Two collinear vectors having the same magnitude are equal.


Find the value of x for which `x(hati + hatj + hatk)` is a unit vector.


If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.


Express \[\vec{AB}\]  in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (−6, 3), B (−2, −5)
Find \[\left| \vec{A} B \right|\] in each case.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]


Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]


Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]


If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]  


If \[\vec{p} = 5 \hat{i} + \lambda \hat{j} - 3 \hat{k} \text{ and } \vec{q} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then find the value of λ, so that \[\vec{p} + \vec{q}\] and \[\vec{p} - \vec{q}\]  are perpendicular vectors. 


If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\]  then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example. 


Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle. 


Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1). 


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).


Find the unit vector in the direction of vector \[\overrightarrow{PQ} ,\]

 where P and Q are the points (1, 2, 3) and (4, 5, 6).


Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.


Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.


If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.


If \[\vec{a}  \times  \vec{b}  =  \vec{c}  \times  \vec{d}   \text { and }   \vec{a}  \times  \vec{c}  =  \vec{b}  \times  \vec{d}\] , show that \[\vec{a}  -  \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .


If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.


Position vector of a point P is a vector whose initial point is origin.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:


If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =


Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is


Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2


If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, internally the ratio 2:1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×