Advertisements
Advertisements
प्रश्न
Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes.
उत्तर
\[\text{ Let } \theta_1 \text{ be the angle between } \vec{a} \text{ and } x - axis.\]
\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]
\[ \vec{b} = \hat{i} .........................\text{ (Because } \ \hat{i} \text{ is the unit vector along }x-axis)\]
\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]
\[ \vec{a} . \vec{b} = 1 + 0 + 0 = 1\]
\[\cos \theta_1 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}\]
\[ \Rightarrow \theta_1 = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 1 \right)\]
\[\]
\[\text{ Let } \theta_2 \text{ be the angle between } \vec{a} \ \text{ and } y - \text{ axis }\]
\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]
\[ \vec{b} = \hat{j} ........................... \text { (Because } \hat{j}\ \text{ is the unit vector along }y-\text{ axis) }\]
\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]
\[ \vec{a} . \vec{b} = 0 + 1 + 0 = 1\]
\[\cos \theta_2 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}\]
\[ \Rightarrow \theta_2 = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 2 \right)\]
\[\text{ Let } \theta_3 \text{ be the angle between } \vec{a} \text{ and } z - \text{ axis }.\]
\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]
\[ \vec{b} = \hat{k}.................................. { (Because } \ \hat{k}\ \text{ is the unit vector along }z-\text{ axis })\]
\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]
\[ \vec{a} . \vec{b} = 0 + 0 + 1 = 1\]
\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}\]
\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 3 \right)\]
\[\text{ From } (1), (2) \text{ and } (3), \text{ the given vector is equally inclined to the coordinate axes }.\]
APPEARS IN
संबंधित प्रश्न
If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment AB.
Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.
Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel
Represent graphically a displacement of 40 km, 30° east of north.
Classify the following as scalar and vector quantity.
Time period
In Figure, identify the following vector.
Coinitial
`veca and -veca` are collinear.
Two collinear vectors having the same magnitude are equal.
Find the direction cosines of the vector `hati + 2hatj + 3hatk`.
Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).
Express \[\vec{AB}\] in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (4, −1), B (1, 3)
Find \[\left| \vec{A} B \right|\] in each case.
ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]
Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]
Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]
Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.
The adjacent sides of a parallelogram are represented by the vectors \[\vec{a} = \hat{i} + \hat{j} - \hat{k}\text{ and }\vec{b} = - 2 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find unit vectors parallel to the diagonals of the parallelogram.
If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]
Show that the vectors \[\vec{a} = \frac{1}{7}\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right), \vec{b} = \frac{1}{7}\left( 3\hat{i} - 6 {j} + 2 \hat{k} \right), \vec{c} = \frac{1}{7}\left( 6 \hat{i} + 2 \hat{j} - 3 {k} \right)\] are mutually perpendicular unit vectors.
If \[\vec{p} = 5 \hat{i} + \lambda \hat{j} - 3 \hat{k} \text{ and } \vec{q} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then find the value of λ, so that \[\vec{p} + \vec{q}\] and \[\vec{p} - \vec{q}\] are perpendicular vectors.
If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\] then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example.
Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.
If the vertices A, B and C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC?
If A, B and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C.
Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.
If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.
If \[\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \text { and } \vec{a} \times \vec{c} = \vec{b} \times \vec{d}\] , show that \[\vec{a} - \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .
if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.
Let (h, k) be a fixed point where h > 0, k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the points P and Q. Then the minimum area of the ΔOPQ. O being the origin, is
If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `hati + 2hatj - hatk` and `-hati + hatj + hatk` respectively, internally the ratio 2:1.