मराठी

Find the Angles Which the Vector → a = ^ I − ^ J + √ 2 ^ K Makes with the Coordinate Axes. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.

बेरीज

उत्तर

\[\text{Let  }   \theta_1\text{ be the angle between } \vec{a}\text { and } x - axis.\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2 + \left( \sqrt{2} \right)^2} = \sqrt{4} = 2\]

\[ \vec{b} = \hat{i}\text { (Because } \hat{i} \text{ is the unit vector alongx-axis) }\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 1 + 0 + 0 = 1\]

\[\cos \theta_1 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( 2 \right)\left( 1 \right)} = \frac{1}{2}\]

\[ \Rightarrow \theta_1 = \cos^{- 1} \left( \frac{1}{2} \right) = \frac{\pi}{3}\]

\[\]

\[\text{ Let } \theta_2 \text{ be the angle between } \vec{a} \text{ and } y - axis.\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2 + \left( \sqrt{2} \right)^2} = \sqrt{4} = 2\]

\[ \vec{b} = \hat{j}............\text{  (Because } \hat{j}\text{ is the unit vector alongy-axis) }\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 0 - 1 + 0 = - 1\]

\[\cos \theta_2 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{- 1}{\left( 2 \right)\left( 1 \right)} = \frac{- 1}{2}\]

\[ \Rightarrow \theta_2 = \cos^{- 1} \left( \frac{- 1}{2} \right) = \frac{2\pi}{3}\]

\[\]

\[\text{ Let } \theta_3\text{ be the angle between } \vec{a} \text{ and } z - axis.\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2 + \left( \sqrt{2} \right)^2} = \sqrt{4} = 2\]

\[ \vec{b} = \hat{k}...............\text{ (Because    } \hat{ k }\text {   is the unit vector along   z-axis) }\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 0 + 0 + \sqrt{2} = \sqrt{2}\]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{\sqrt{2}}{\left( 2 \right)\left( 1 \right)} = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{1}{\sqrt{2}} \right) = \frac{\pi}{4}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - Exercise 24.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
Exercise 24.1 | Q 6 | पृष्ठ ३०

संबंधित प्रश्‍न

If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment  AB.


Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel


Represent graphically a displacement of 40 km, 30° east of north.


Classify the following measures as scalar and vector.

10 kg


Classify the following as scalar and vector quantity.

Time period


In Figure, identify the following vector.

 

Coinitial


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, externally in the ratio 2:1.


If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


If  \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\] 


If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\]  then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example. 


Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1). 


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C


Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.


Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.


If \[\vec{a}  \times  \vec{b}  =  \vec{c}  \times  \vec{d}   \text { and }   \vec{a}  \times  \vec{c}  =  \vec{b}  \times  \vec{d}\] , show that \[\vec{a}  -  \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .


If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.


A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.


If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.


Position vector of a point P is a vector whose initial point is origin.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


A line l passes through point (– 1, 3, – 2) and is perpendicular to both the lines `x/1 = y/2 = z/3` and `(x + 2)/-3 = (y - 1)/2 = (z + 1)/5`. Find the vector equation of the line l. Hence, obtain its distance from the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×