मराठी

Find the Angle Between the Vectors → a and → B Where → a = ^ I − ^ J and → B = ^ J + ^ K - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]

बेरीज

उत्तर

\[\ \text{ Let }\theta\text{ be the angle between } \vec{a} \text{ and } \vec{b} . \]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2} = \sqrt{2}\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{2}\]

\[ \vec{a} . \vec{b} = 0 - 1 + 0 = - 1\]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{- 1}{\sqrt{2}\sqrt{2}} = \frac{- 1}{2}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{- 1}{2} \right) = \frac{2\pi}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - Exercise 24.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
Exercise 24.1 | Q 5.1 | पृष्ठ ३०

संबंधित प्रश्‍न

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.


If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment  AB.


Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.


Represent graphically a displacement of 40 km, 30° east of north.


Classify the following measures as scalar and vector.

10 kg


In Figure, identify the following vector.

 

Coinitial


Two vectors having the same magnitude are collinear.


Two collinear vectors having the same magnitude are equal.


Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, externally in the ratio 2:1.


Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).


Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of the x-axis.


If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.


Express \[\vec{AB}\]  in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (4, −1), B (1, 3)
Find \[\left| \vec{A} B \right|\] in each case.


Express \[\vec{AB}\]  in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (−6, 3), B (−2, −5)
Find \[\left| \vec{A} B \right|\] in each case.


ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.


Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.


\[\text{If }\vec{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \vec{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}\text{ and }\vec{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \vec{a} - 2 \vec{b} + 4 \vec{c} \right| .\]

 


If  \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\] 


 If  \[\hat{ a  } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that

 \[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\] 


Show that the vectors \[\vec{a} = \frac{1}{7}\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right), \vec{b} = \frac{1}{7}\left( 3\hat{i} - 6 {j} + 2 \hat{k} \right), \vec{c} = \frac{1}{7}\left( 6 \hat{i} + 2 \hat{j} - 3 {k} \right)\] are mutually perpendicular unit vectors. 


Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1). 


Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle. 


If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


If \[\vec{a}  \times  \vec{b}  =  \vec{c}  \times  \vec{d}   \text { and }   \vec{a}  \times  \vec{c}  =  \vec{b}  \times  \vec{d}\] , show that \[\vec{a}  -  \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .


Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:


If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =


Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is


Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×