मराठी

If ˆ a and ˆ b are unit vectors inclined at an angle θ, prove that - Mathematics

Advertisements
Advertisements

प्रश्न

 If  \[\hat{ a  } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that

 \[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\] 

बेरीज

उत्तर

\[\text{ Given that } \hat{a}\text{ and } \hat{b}\text{ are unit vectors }.\]

\[So,\left| \hat{a} \right|=1,\left| \hat{b} \right|=1\]

\[\text{ We have }\] 

\[ \left| \hat{a} + \hat{b} \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 + 2 \hat{a} .\hat{ b} \]

\[ = 1 + 1 + 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]

\[ = 2 + 2\cos \theta\]

\[ \Rightarrow \cos\theta = \frac{\left| \hat{a} + \hat{b} \right|^2 - 2}{2} . . . \left( 1 \right)\]

\[ \left| \hat{a} - b \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 - 2 \hat{a} . \hat{b} \]

\[ = 1 + 1 - 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]

\[ = 2 - 2\cos \theta\]

\[ \Rightarrow \cos\theta = \frac{2 - \left| \hat{a} - \hat{b} \right|^2}{2} . . . \left( 2 \right)\]

\[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}\]

\[ = \sqrt{\frac{1 - \frac{2 - \left| \hat{a} - \hat{b} \right|^2}{2}}{2}}[\text{ From } (2)]\]

\[ = \sqrt{\frac{2 + \left| \hat{a} - \hat{b} \right|^2 - 2}{4}}\]

\[ = \sqrt{\frac{\left| \hat{a} - \hat{b} \right|^2}{4}}\]

\[ = \frac{1}{2}\left| \hat{a} - \hat{b} \right|\]

\[\text{ Now },\]

\[\tan \frac{\theta}{2} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \frac{\frac{1}{2}\left| \hat{a} - \hat{b} \right|}{\frac{1}{2}\left| \hat{a} + \hat{b} \right|} = \frac{\left| \hat{a} - \hat{b} \right|}{\left| \hat{a} + b \right|}\] 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - Exercise 24.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
Exercise 24.1 | Q 8.2 | पृष्ठ ३०

संबंधित प्रश्‍न

If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment  AB.


Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector

`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.


Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel


`veca and -veca` are collinear.


Two collinear vectors are always equal in magnitude.


Two collinear vectors having the same magnitude are equal.


Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.


Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).


Express \[\vec{AB}\]  in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (4, −1), B (1, 3)
Find \[\left| \vec{A} B \right|\] in each case.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]


Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]


Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.


Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]  


If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ. 


Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1). 


If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C


Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.


Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


Let (h, k) be a fixed point where h > 0, k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the points P and Q. Then the minimum area of the ΔOPQ. O being the origin, is


If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =


Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2


A line l passes through point (– 1, 3, – 2) and is perpendicular to both the lines `x/1 = y/2 = z/3` and `(x + 2)/-3 = (y - 1)/2 = (z + 1)/5`. Find the vector equation of the line l. Hence, obtain its distance from the origin.


If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, internally the ratio 2:1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×