मराठी

If ^ a and ^ B Are Unit Vectors Inclined at an Angle θ, Prove that Cos θ 2 = 1 2 ∣ ∣ ^ a + ^ B ∣ ∣ - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\] 

बेरीज

उत्तर

\[\text{ Given that } \hat{ a }\ \text{ and } \hat{b}\ \text{ are unit vectors }.\]

\[So,\left| \hat{a} \right|=1,\left| \hat{b} \right|=1\]
\[\text{We have}\]

\[ \left| \hat{a} + \hat{b} \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 + 2 \hat{a} . \hat{b} \]

\[ = 1 + 1 + 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]

\[ = 2 + 2\cos \theta\]

\[ \Rightarrow \cos\theta = \frac{\left| \hat{a} + \hat{b} \right|^2 - 2}{2} .....................\left( 1 \right)\]

 

\[ \left| \hat{a} - b \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 - 2 \hat{a} .\hat {b} \]

\[ = 1 + 1 - 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]

\[ = 2 - 2\cos \theta\]

\[ \Rightarrow \cos\theta = \frac{2 - \left| \hat{a} - \hat{b} \right|^2}{2}...................... \left( 2 \right)\]

\[ \text{ Now },\]

\[\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}\]

\[ = \sqrt{\frac{1 + \frac{\left| \hat{a} + \hat{b} \right|^2 - 2}{2}}{2}} ...............\left[\text{  From }\left( 1 \right) \right]\]

\[ = \sqrt{\frac{2 + \left| \hat{a} + \hat{b} \right|^2 - 2}{4}}\]

\[ = \sqrt{\frac{\left| \hat{a} + \hat{b} \right|^2}{4}}\]

\[ = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\]

 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - Exercise 24.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
Exercise 24.1 | Q 8.1 | पृष्ठ ३०

संबंधित प्रश्‍न

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.


If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment  AB.


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector

`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.


If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.


Two vectors having the same magnitude are collinear.


Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, externally in the ratio 2:1.


Show that the points A, B and C with position vectors `veca = 3hati - 4hatj - 4hatk`, `vecb = 2hati - hatj + hatk` and `vecc = hati - 3hatj - 5hatk`, respectively form the vertices of a right angled triangle.


Let `veca` and `vecb` be two unit vectors, and θ is the angle between them. Then `veca + vecb` is a unit vector if ______.


Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.


\[\text{If }\vec{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \vec{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}\text{ and }\vec{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \vec{a} - 2 \vec{b} + 4 \vec{c} \right| .\]

 


If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]


If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of  \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\]  where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\]  is perpendicular to \[\vec{\alpha}\]


If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ. 


Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1). 


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C


Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).


If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.


A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.


If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.


The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:


Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×