Advertisements
Advertisements
प्रश्न
If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.
उत्तर
Here, Position vector of A = `hat"i" + hat"j" - hat"k"`
Position vector of B = `2hat"i" - hat"j" + 3hat"k"`
Position vector of C = `2hat"i" - 3hat"k"`
Position vector of D = `3hat"i" - 2hat"j" + hat"k"`
`vec"AB"` = P.V of B – P.V of A
= `(2hat"i" - hat"j" + 3hat"k") - (hat"i" + hat"j" - hat"k")`
= `hat"i" - 2hat"j" + 4hat"k"`
`vec"CD"` = P.V. of D – P.V. of C
= `(3hat"i" - 2hat"j" + hat"k") - (2hat"i" - 3hat"k")`
= `hat"i" - 2hat"j" + 4hat"k"`
Projection of `vec"AB"` on `vec"CD" = (vec"AB" * vec"Cd")/|vec"CD"|`
= `((hat"i" - 2hat"j" + 4hat"k") * (hat"i" - 2hat"j" + 4hat"k"))/sqrt((1)^2 + (-2)^2 + (4)^2)`
= `(1 + 4 + 16)/sqrt(1 + 4 + 16)`
= `21/sqrt(21)`
= `sqrt(21)`
Hence, the required projection = `sqrt(21)`.
APPEARS IN
संबंधित प्रश्न
Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.
Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel
Represent graphically a displacement of 40 km, 30° east of north.
Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `hati + 2hatj - hatk` and `-hati + hatj + hatk` respectively, externally in the ratio 2:1.
Show that the points A, B and C with position vectors `veca = 3hati - 4hatj - 4hatk`, `vecb = 2hati - hatj + hatk` and `vecc = hati - 3hatj - 5hatk`, respectively form the vertices of a right angled triangle.
Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of the x-axis.
If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.
Express \[\vec{AB}\] in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (−6, 3), B (−2, −5)
Find \[\left| \vec{A} B \right|\] in each case.
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]
Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]
Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]
If \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]
If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]
For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]
Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).
Find the unit vector in the direction of vector \[\overrightarrow{PQ} ,\]
where P and Q are the points (1, 2, 3) and (4, 5, 6).
If \[\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \text { and } \vec{a} \times \vec{c} = \vec{b} \times \vec{d}\] , show that \[\vec{a} - \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .
Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.
Let (h, k) be a fixed point where h > 0, k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the points P and Q. Then the minimum area of the ΔOPQ. O being the origin, is
If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =
Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.
Reason (R): The sum of squares of the direction cosines of a line is 1.
If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.