Advertisements
Advertisements
Question
If \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\]
Solution
\[\text{ Given that } \hat{ a }\ \text{ and } \hat{b}\ \text{ are unit vectors }.\]
\[So,\left| \hat{a} \right|=1,\left| \hat{b} \right|=1\]
\[\text{We have}\]
\[ \left| \hat{a} + \hat{b} \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 + 2 \hat{a} . \hat{b} \]
\[ = 1 + 1 + 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]
\[ = 2 + 2\cos \theta\]
\[ \Rightarrow \cos\theta = \frac{\left| \hat{a} + \hat{b} \right|^2 - 2}{2} .....................\left( 1 \right)\]
\[ \left| \hat{a} - b \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 - 2 \hat{a} .\hat {b} \]
\[ = 1 + 1 - 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]
\[ = 2 - 2\cos \theta\]
\[ \Rightarrow \cos\theta = \frac{2 - \left| \hat{a} - \hat{b} \right|^2}{2}...................... \left( 2 \right)\]
\[ \text{ Now },\]
\[\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}\]
\[ = \sqrt{\frac{1 + \frac{\left| \hat{a} + \hat{b} \right|^2 - 2}{2}}{2}} ...............\left[\text{ From }\left( 1 \right) \right]\]
\[ = \sqrt{\frac{2 + \left| \hat{a} + \hat{b} \right|^2 - 2}{4}}\]
\[ = \sqrt{\frac{\left| \hat{a} + \hat{b} \right|^2}{4}}\]
\[ = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\]
APPEARS IN
RELATED QUESTIONS
If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment AB.
Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.
`veca and -veca` are collinear.
Two collinear vectors having the same magnitude are equal.
Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `hati + 2hatj - hatk` and `-hati + hatj + hatk` respectively, externally in the ratio 2:1.
Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).
If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.
Let `veca` and `vecb` be two unit vectors, and θ is the angle between them. Then `veca + vecb` is a unit vector if ______.
Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]
ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]
Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.
The adjacent sides of a parallelogram are represented by the vectors \[\vec{a} = \hat{i} + \hat{j} - \hat{k}\text{ and }\vec{b} = - 2 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find unit vectors parallel to the diagonals of the parallelogram.
If \[\hat{ a } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that
\[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]
Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes.
If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\] where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\] is perpendicular to \[\vec{\alpha}\]
If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\] then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example.
Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle.
Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle.
Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).
Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.
If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.
Position vector of a point P is a vector whose initial point is origin.
The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as
The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:
If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =
Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2
If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.