English

If ^ a and ^ B Are Unit Vectors Inclined at an Angle θ, Prove that Cos θ 2 = 1 2 ∣ ∣ ^ a + ^ B ∣ ∣ - Mathematics

Advertisements
Advertisements

Question

If  \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\] 

Sum

Solution

\[\text{ Given that } \hat{ a }\ \text{ and } \hat{b}\ \text{ are unit vectors }.\]

\[So,\left| \hat{a} \right|=1,\left| \hat{b} \right|=1\]
\[\text{We have}\]

\[ \left| \hat{a} + \hat{b} \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 + 2 \hat{a} . \hat{b} \]

\[ = 1 + 1 + 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]

\[ = 2 + 2\cos \theta\]

\[ \Rightarrow \cos\theta = \frac{\left| \hat{a} + \hat{b} \right|^2 - 2}{2} .....................\left( 1 \right)\]

 

\[ \left| \hat{a} - b \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 - 2 \hat{a} .\hat {b} \]

\[ = 1 + 1 - 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]

\[ = 2 - 2\cos \theta\]

\[ \Rightarrow \cos\theta = \frac{2 - \left| \hat{a} - \hat{b} \right|^2}{2}...................... \left( 2 \right)\]

\[ \text{ Now },\]

\[\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}\]

\[ = \sqrt{\frac{1 + \frac{\left| \hat{a} + \hat{b} \right|^2 - 2}{2}}{2}} ...............\left[\text{  From }\left( 1 \right) \right]\]

\[ = \sqrt{\frac{2 + \left| \hat{a} + \hat{b} \right|^2 - 2}{4}}\]

\[ = \sqrt{\frac{\left| \hat{a} + \hat{b} \right|^2}{4}}\]

\[ = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\]

 

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.1 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.1 | Q 8.1 | Page 30

RELATED QUESTIONS

If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment  AB.


Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.


`veca and -veca` are collinear.


Two collinear vectors having the same magnitude are equal.


Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, externally in the ratio 2:1.


Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).


If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.


Let `veca` and `vecb` be two unit vectors, and θ is the angle between them. Then `veca + vecb` is a unit vector if ______.


Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]


ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.


The adjacent sides of a parallelogram are represented by the vectors \[\vec{a} = \hat{i} + \hat{j} - \hat{k}\text{ and }\vec{b} = - 2 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find unit vectors parallel to the diagonals of the parallelogram.


\[\text{If }\vec{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \vec{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}\text{ and }\vec{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \vec{a} - 2 \vec{b} + 4 \vec{c} \right| .\]

 


 If  \[\hat{ a  } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that

 \[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\] 


If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of  \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\]  where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\]  is perpendicular to \[\vec{\alpha}\]


If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\]  then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example. 


Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle. 


Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle. 


Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).


Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.


If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.


Position vector of a point P is a vector whose initial point is origin.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:


If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =


Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2


If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×