English

Dot Product of a Vector with ^ I + ^ J − 3 ^ K , ^ I + 3 ^ J − 2 ^ K and 2 ^ I + ^ J + 4 ^ K Are 0, 5 and 8 Respectively. Find the Vector. - Mathematics

Advertisements
Advertisements

Question

Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.

Sum

Solution

\[\text{Let  a } \hat{i} + b\hat{j}+ c \hat{k}\text{ be the required vector.  }\]
\[\text{Given that}\]
\[\left( a\hat{i} + b \hat{j} + c \hat{k}\right) . \left( \hat{i} + \hat{j} - 3 \hat{k} \right) = 0\]
\[ \Rightarrow a + b - 3c = 0 . . . \left( 1 \right)\]
\[\left( \hat{ai} + \hat{bj} +  \hat{ck}\right) . \left(\hat{i} + 3 \hat{j} - \hat{2k}\right) = 5\] 
\[ \Rightarrow a + 3b - 2c = 5 . . . \left( 2 \right)\]
\[\left( \hat{ai} + b \hat{j} + \hat{ck} \right) . \left( \hat{2i} + \hat{j} + \hat{4k} \right) = 5\]
\[ \Rightarrow 2a + b + 4c = 8 . . . \left( 3 \right)\]
\[\text{ Solving } (1), (2) \text{ and } (3), \text{  we get }\]
\[a = 1, b = 2, c = 1\]
\[\text{ So },a \hat{i} + \hat{bj} + \hat{ck} = \hat{i} + \hat{2j} + \hat{k} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.1 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.1 | Q 7.1 | Page 30

RELATED QUESTIONS

Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector

`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.


Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel


If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.


Represent graphically a displacement of 40 km, 30° east of north.


Classify the following measures as scalar and vector.

10 kg


In Figure, identify the following vector.

 

Coinitial


`veca and -veca` are collinear.


Two collinear vectors are always equal in magnitude.


Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.


Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).


Find the value of x for which `x(hati + hatj + hatk)` is a unit vector.


Let `veca` and `vecb` be two unit vectors, and θ is the angle between them. Then `veca + vecb` is a unit vector if ______.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


\[\text{If }\vec{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \vec{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}\text{ and }\vec{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \vec{a} - 2 \vec{b} + 4 \vec{c} \right| .\]

 


If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]


If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]


If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]  


If \[\vec{p} = 5 \hat{i} + \lambda \hat{j} - 3 \hat{k} \text{ and } \vec{q} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then find the value of λ, so that \[\vec{p} + \vec{q}\] and \[\vec{p} - \vec{q}\]  are perpendicular vectors. 


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle. 


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.


A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.


Position vector of a point P is a vector whose initial point is origin.


Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, internally the ratio 2:1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×