English

If the Vertices A, B and C of ∆Abc Have Position Vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), Respectively, What is the Magnitude of ∠Abc? - Mathematics

Advertisements
Advertisements

Question

If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC

Sum

Solution

\[\text{ Given that }\]
\[ \vec{OA} = \hat{i} + 2 \hat{j} + 3 \hat{k} ; \vec{OB} = - 1 \hat{i} + 0 \hat{j} + 0 \hat{k} ; \vec{OC} = 0 \hat{i} + 1 \hat{j} + 2 \hat{k} \]
\[ \vec{AB} = \vec{OB} - \vec{OA} = - 2 \hat{i} - 2 \hat{j} - 3 \hat{k} \Rightarrow \left| \vec{AB} \right| = \sqrt{4 + 4 + 9} = \sqrt{17}\]
\[ \vec{BC} = \vec{OC} - \vec{OB} = \hat{i} + \hat{j} + 2 \hat{k} \Rightarrow \left| \vec{BC} \right| = \sqrt{1 + 1 + 4} = \sqrt{6}\]
\[ \vec{CA} = \vec{OA} - \vec{OC} = \hat{i} + \hat{j} + \hat{k} \Rightarrow \left| \vec{CA} \right| = \sqrt{1 + 1 + 1} = \sqrt{3}\]
\[\cos  ∠ ABC = \frac{\left| \vec{AB} . \vec{BC} \right|}{\left| \vec{AB} \right|\left| \vec{BC} \right|} = \frac{\left| - 2 - 2 - 6 \right|}{\left( \sqrt{17} \right)\left( \sqrt{6} \right)} = \frac{10}{\sqrt{102}}\]
\[ \Rightarrow ∠  ABC = \cos^{- 1} \left( \frac{10}{\sqrt{102}} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.1 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.1 | Q 24 | Page 31

RELATED QUESTIONS

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.


If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment  AB.


Classify the following measures as scalar and vector.

10 kg


`veca and -veca` are collinear.


Two collinear vectors are always equal in magnitude.


Two vectors having the same magnitude are collinear.


Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, externally in the ratio 2:1.


Find the value of x for which `x(hati + hatj + hatk)` is a unit vector.


If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.


Let `veca` and `vecb` be two unit vectors, and θ is the angle between them. Then `veca + vecb` is a unit vector if ______.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]


Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]


 If  \[\hat{ a  } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that

 \[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\] 


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C


Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).


Find the unit vector in the direction of vector \[\overrightarrow{PQ} ,\]

 where P and Q are the points (1, 2, 3) and (4, 5, 6).


Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


If \[\vec{a}  \times  \vec{b}  =  \vec{c}  \times  \vec{d}   \text { and }   \vec{a}  \times  \vec{c}  =  \vec{b}  \times  \vec{d}\] , show that \[\vec{a}  -  \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.


If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is


If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×