Advertisements
Advertisements
Question
Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.
Solution
Given that `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.
We know that `|vec"a" xx vec"b"| = |vec"a"||vec"b"| sin theta`
∴ `vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(3, 1, 2),(2, -2, 4)|`
= `hat"i"(4 + 4) - hat"j"(12 - 4) + hat"k"(-6 - 2)`
= `8hat"i" - 8hat"j" - 8hat"k"`
`|vec"a" xx vec"b"| = sqrt((8)^2 + (-8)^2 + (-8)^2)`
= `sqrt(64 + 64 + 64)`
= `sqrt(192)`
= `sqrt(64 xx 3)`
= `8sqrt(3)`
`|vec"a"| = sqrt((3)^2 + (1)^2 + (2)^2)`
= `sqrt(9 + 1 + 4)`
= `sqrt(14)`
`|vec"b"| = sqrt((2)^2 + (-2)^2 + (4)^2)`
= `sqrt(4 + 4 + 16)`
= `sqrt(24)`
= `2sqrt(6)`
∴ `sin theta = |vec"a" xx vec"b"|/(|vec"a"||vec"b"|)`
= `(8sqrt(3))/(sqrt(14) * 2sqrt(6))`
⇒ `(4sqrt(3))/sqrt(84) = (4sqrt(3))/(2sqrt(21))`
= `2/sqrt(7)`
Hence, `sin theta = 2/sqrt(7)`.
APPEARS IN
RELATED QUESTIONS
Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.
Classify the following as scalar and vector quantity.
Time period
In Figure, identify the following vector.
Coinitial
`veca and -veca` are collinear.
Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.
Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).
Show that the points A, B and C with position vectors `veca = 3hati - 4hatj - 4hatk`, `vecb = 2hati - hatj + hatk` and `vecc = hati - 3hatj - 5hatk`, respectively form the vertices of a right angled triangle.
Express \[\vec{AB}\] in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (−6, 3), B (−2, −5)
Find \[\left| \vec{A} B \right|\] in each case.
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]
Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]
Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes.
If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\] where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\] is perpendicular to \[\vec{\alpha}\]
Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle.
Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.
Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle.
If the vertices A, B and C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC?
If A, B and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C.
Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).
Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.
If \[\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \text { and } \vec{a} \times \vec{c} = \vec{b} \times \vec{d}\] , show that \[\vec{a} - \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .
if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.
If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.
Position vector of a point P is a vector whose initial point is origin.
Let (h, k) be a fixed point where h > 0, k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the points P and Q. Then the minimum area of the ΔOPQ. O being the origin, is
If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =
Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is
If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.