English

If → a × → B = → C × → D and → a × → C = → B × → D , Show that → a − → D is Parallel to → B − → C Where → a ≠ → D and → B ≠ → C . - Mathematics

Advertisements
Advertisements

Question

If \[\vec{a}  \times  \vec{b}  =  \vec{c}  \times  \vec{d}   \text { and }   \vec{a}  \times  \vec{c}  =  \vec{b}  \times  \vec{d}\] , show that \[\vec{a}  -  \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .

Solution

Two non zero vectors are parallel if and only if their cross product is zero vector.
So, we have to prove that cross product of \[\vec{a} - \vec{d}\] and  \[\vec{b}  -  \vec{c}\] is zero vector. \[\left( \vec{a} - \vec{d} \right) \times \left( \vec{b} - \vec{c} \right) = \left( \vec{a} \times \vec{b} \right) - \left( \vec{a} \times \vec{c} \right) - \left( \vec{d} \times \vec{b} \right) + \left( \vec{d} \times \vec{c} \right)\]

Since, it is given that 

\[\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \text { and } \vec{a} \times \vec{c} = \vec{b} \times \vec{d}\]

And,

\[\vec{d} \times \vec{b} = - \vec{b} \times \vec{d} \]

\[ \vec{d} \times \vec{c} = - \vec{c} \times \vec{d}\]

Therefore, 

\[\left( \vec{a} - \vec{d} \right) \times \left( \vec{b} - \vec{c} \right) = \left( \vec{a} \times \vec{b} \right) - \left( \vec{a} \times \vec{c} \right) - \left( \vec{d} \times \vec{b} \right) + \left( \vec{d} \times \vec{c} \right)\]

\[ = \left( \vec{c} \times \vec{d} \right) - \left( \vec{b} \times \vec{d} \right) + \left( \vec{b} \times \vec{d} \right) - \left( \vec{c} \times \vec{d} \right)\]

\[ = \vec{0}\]

Hence,

\[\vec{a} - \vec{d}\] is parallel to 

\[\vec{b} - \vec{c}\] where  \[\vec{a}  \neq  \vec{d}   \text { and }     \vec{b}  \neq  \vec{c}\] .

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

RELATED QUESTIONS

Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.


Represent graphically a displacement of 40 km, 30° east of north.


Classify the following measures as scalar and vector.

10 kg


Classify the following as scalar and vector quantity.

Time period


Two vectors having the same magnitude are collinear.


Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of the x-axis.


Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]


The adjacent sides of a parallelogram are represented by the vectors \[\vec{a} = \hat{i} + \hat{j} - \hat{k}\text{ and }\vec{b} = - 2 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find unit vectors parallel to the diagonals of the parallelogram.


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


\[\text{If }\vec{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \vec{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}\text{ and }\vec{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \vec{a} - 2 \vec{b} + 4 \vec{c} \right| .\]

 


If \[\vec{p} = 5 \hat{i} + \lambda \hat{j} - 3 \hat{k} \text{ and } \vec{q} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then find the value of λ, so that \[\vec{p} + \vec{q}\] and \[\vec{p} - \vec{q}\]  are perpendicular vectors. 


If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of  \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\]  where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\]  is perpendicular to \[\vec{\alpha}\]


Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle. 


If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ. 


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle. 


Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.


Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.


Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.


Position vector of a point P is a vector whose initial point is origin.


Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


A line l passes through point (– 1, 3, – 2) and is perpendicular to both the lines `x/1 = y/2 = z/3` and `(x + 2)/-3 = (y - 1)/2 = (z + 1)/5`. Find the vector equation of the line l. Hence, obtain its distance from the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×