English

If → α = 3 ^ I + 4 ^ J + 5 ^ K and → β = 2 ^ I + ^ J − 4 ^ K , Then Express → β in the Form of → β = → β 1 + → β 2 , Where → β 1 is Parallel to → α and → β 2 is Perpendicular to → α - Mathematics

Advertisements
Advertisements

Question

If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of  \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\]  where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\]  is perpendicular to \[\vec{\alpha}\]

Sum

Solution

\[\text{ Given that } \vec{\alpha} =3 \hat{i} + 4 \hat{j} +5 \hat{k} \text{ and } \vec{\beta} =2 \hat{i} + \hat{j} - 4 \hat{k} \]
\[\hat{ Also },\]
\[ \vec{\beta} = \vec{\beta_1} + \vec{\beta_2} \]
\[ \Rightarrow \vec{\beta_2} = \vec{\beta} - \vec{\beta}_1 . . . \left( 1 \right)\]
\[\text{ Since } \vec{\beta}_1 \text{ is parallel to } \vec{\alpha} ,\]
\[ \vec{\beta_1} = t \vec{\alpha} \]
\[ \Rightarrow \vec{\beta_1} = t \left( 3 \hat{i} + 4 \hat{j} +5 \hat{k} \right) = 3t \hat{i} + 4t \hat{j} +5t \hat{k} ...(2)\]
\[\text{ Substituting the values of } \vec{\beta_1} \text{ and } \vec{\alpha} \text{ in } (1), \text{ we get }\]
\[ \vec{\beta_2} = 2 \hat{i} + \hat{j} - 4 \hat{k} - \left( 3t \hat{i} + 4t \hat{j} +5t \hat{k} \right) = \left( 2 - 3t \right) \hat{i} + \left( 1 - 4t \right) \hat{j} + \left( - 4 - 5t \right) \hat{k} . . . \left( 3 \right)\]
\[\text{ Since } \vec{\beta_2} \text{ is perpendicular to } \vec{\alpha} ,\]
\[ \vec{\beta_2} . \vec{\alpha} = 0\]
\[ \Rightarrow \left[ \left( 2 - 3t \right) \text{i} + \left( 1 - 4t \right) \hat{j} + \left( - 4 - 5t \right) \hat{k} \right] . \left( 3 \hat{i} + 4 \hat{j} +5 \hat{k} \right) = 0\]
\[ \Rightarrow 3 \left( 2 - 3t \right) + 4 \left( 1 - 4t \right) + 5 \left( - 4 - 5t \right) = 0\]
\[ \Rightarrow 6 - 9t + 4 - 16t - 20 - 25t = 0\]
\[ \Rightarrow - 50t = 10\]
\[ \Rightarrow t = \frac{- 1}{5}\]
\[\text{ From } (2) \text{ and } (3), \text{ we get }\]
\[ \vec{\beta_1} = \frac{- 1}{5} \left( 3 \hat{i} + 4 \hat{j} +5 \hat{k} \right)\]
\[ \vec{\beta_2} = \frac{13}{5} \hat{i} + \frac{9}{5} \hat{j} - 3 \hat{k} = \frac{1}{5}\left( 13 \hat{i} + 9 \hat{j} - 15 \hat{k} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.1 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.1 | Q 17 | Page 30

RELATED QUESTIONS

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector

`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.


Find the position vector of a point which divides the join of points with position vectors `veca-2vecb" and "2veca+vecb`externally in the ratio 2 : 1


Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel


Classify the following measures as scalar and vector.

10 kg


In Figure, identify the following vector.

 

Coinitial


Find the direction cosines of the vector `hati + 2hatj + 3hatk`.


Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).


Show that the points A, B and C with position vectors `veca = 3hati - 4hatj - 4hatk`, `vecb = 2hati - hatj + hatk` and `vecc = hati - 3hatj - 5hatk`, respectively form the vertices of a right angled triangle.


If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]


If  \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\] 


If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]


Show that the vectors \[\vec{a} = \frac{1}{7}\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right), \vec{b} = \frac{1}{7}\left( 3\hat{i} - 6 {j} + 2 \hat{k} \right), \vec{c} = \frac{1}{7}\left( 6 \hat{i} + 2 \hat{j} - 3 {k} \right)\] are mutually perpendicular unit vectors. 


If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\]  then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example. 


If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ. 


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).


Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


Show that the vectors \[2 \hat{i} - 3 \hat{j} + 4 \hat{k}\text{ and }- 4 \hat{i} + 6 \hat{j} - 8 \hat{k}\] are collinear.


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.


If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.


The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:


If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×