Advertisements
Advertisements
प्रश्न
If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\] where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\] is perpendicular to \[\vec{\alpha}\]
उत्तर
\[\text{ Given that } \vec{\alpha} =3 \hat{i} + 4 \hat{j} +5 \hat{k} \text{ and } \vec{\beta} =2 \hat{i} + \hat{j} - 4 \hat{k} \]
\[\hat{ Also },\]
\[ \vec{\beta} = \vec{\beta_1} + \vec{\beta_2} \]
\[ \Rightarrow \vec{\beta_2} = \vec{\beta} - \vec{\beta}_1 . . . \left( 1 \right)\]
\[\text{ Since } \vec{\beta}_1 \text{ is parallel to } \vec{\alpha} ,\]
\[ \vec{\beta_1} = t \vec{\alpha} \]
\[ \Rightarrow \vec{\beta_1} = t \left( 3 \hat{i} + 4 \hat{j} +5 \hat{k} \right) = 3t \hat{i} + 4t \hat{j} +5t \hat{k} ...(2)\]
\[\text{ Substituting the values of } \vec{\beta_1} \text{ and } \vec{\alpha} \text{ in } (1), \text{ we get }\]
\[ \vec{\beta_2} = 2 \hat{i} + \hat{j} - 4 \hat{k} - \left( 3t \hat{i} + 4t \hat{j} +5t \hat{k} \right) = \left( 2 - 3t \right) \hat{i} + \left( 1 - 4t \right) \hat{j} + \left( - 4 - 5t \right) \hat{k} . . . \left( 3 \right)\]
\[\text{ Since } \vec{\beta_2} \text{ is perpendicular to } \vec{\alpha} ,\]
\[ \vec{\beta_2} . \vec{\alpha} = 0\]
\[ \Rightarrow \left[ \left( 2 - 3t \right) \text{i} + \left( 1 - 4t \right) \hat{j} + \left( - 4 - 5t \right) \hat{k} \right] . \left( 3 \hat{i} + 4 \hat{j} +5 \hat{k} \right) = 0\]
\[ \Rightarrow 3 \left( 2 - 3t \right) + 4 \left( 1 - 4t \right) + 5 \left( - 4 - 5t \right) = 0\]
\[ \Rightarrow 6 - 9t + 4 - 16t - 20 - 25t = 0\]
\[ \Rightarrow - 50t = 10\]
\[ \Rightarrow t = \frac{- 1}{5}\]
\[\text{ From } (2) \text{ and } (3), \text{ we get }\]
\[ \vec{\beta_1} = \frac{- 1}{5} \left( 3 \hat{i} + 4 \hat{j} +5 \hat{k} \right)\]
\[ \vec{\beta_2} = \frac{13}{5} \hat{i} + \frac{9}{5} \hat{j} - 3 \hat{k} = \frac{1}{5}\left( 13 \hat{i} + 9 \hat{j} - 15 \hat{k} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.
Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel
Classify the following measures as scalar and vector.
10 kg
In Figure, identify the following vector.
Coinitial
Two collinear vectors are always equal in magnitude.
Find the direction cosines of the vector `hati + 2hatj + 3hatk`.
Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.
Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.
Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).
Find the value of x for which `x(hati + hatj + hatk)` is a unit vector.
If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.
Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]
Express \[\vec{AB}\] in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (−6, 3), B (−2, −5)
Find \[\left| \vec{A} B \right|\] in each case.
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]
Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]
Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\] are respectively 4, 0 and 2. Find the vector.
If \[\hat{ a } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that
\[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\]
If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]
Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes.
If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\] \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\] \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]
Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle.
If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ.
Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.
Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.
If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.
if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.
Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.
Position vector of a point P is a vector whose initial point is origin.
Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is
Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.
Reason (R): The sum of squares of the direction cosines of a line is 1.