मराठी

Show that the Points a ( 2 ^ I − ^ J + ^ K ) , B ( ^ I − 3 ^ J − 5 ^ K ) , C ( 3 ^ I − 4 ^ J − 4 ^ K ) Are the Vertices of a Right Angled Triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.

बेरीज

उत्तर

Given the points \[A\left( 2 \hat{i} - \hat{j} + \hat{k} \right), B\left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right)\] and \[C\left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right) .\] Then, \[\vec{AB} =\] Position vector of B - Position vector of A 
\[= \hat{i} - 3 \hat{j} - 5 \hat{k} - \left( 2 \hat{i} - \hat{j} + \hat{k} \right)\]
\[ = \hat{i} - 3 \hat{j} - 5 \hat{k} - 2 \hat{i} + \hat{j} - \hat{k} \]
\[ = - \hat{i} - 2 \hat{j} - 6 \hat{k}\]

\[\overrightarrow{BC} =\] Position vector of  C - Position vector of B
\[= 3 \hat{i} - 4 \hat{j} - 4 \hat{k} - \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right)\]
\[ = 3 \hat{i} - 4 \hat{j} - 4 \hat{k} - \hat{i} + 3 \hat{j} + 5 \hat{k} \]
\[ = 2 \hat{i} - \hat{j} + \hat{k}\]
\[\overrightarrow{CA} =\] Position vector of A- Position vector of C
\[= 2 \hat{i} - \hat{j} + \hat{k} - \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\]
\[ = 2 \hat{i} - \hat{j} + \hat{k} - 3 \hat{i} + 4 \hat{j} + 4 \hat{k} \]
\[ = - \hat{i} + 3 \hat{j} + 5 \hat{k}\]
Clearly, 
\[\overrightarrow{AB} + \vec{BC} + \vec{CA} = \vec{0}\]
\[\text{ Now, }\overrightarrow{\left| AB \right|} = \sqrt{\left( - 1 \right)^2 + \left( - 2 \right)^2 + \left( - 6 \right)^2} = \sqrt{1 + 4 + 36} = \sqrt{41}\]
\[ \overrightarrow{\left| BC \right|} = \sqrt{\left( 2 \right)^2 + \left( - 1 \right)^2 + \left( 1 \right)^2} = \sqrt{4 + 1 + 1} = \sqrt{6}\]
\[ \overrightarrow{\left| CA \right|} = \sqrt{\left( - 1 \right)^2 + \left( 3 \right)^2 + \left( 5 \right)^2} = \sqrt{1 + 9 + 25} = \sqrt{35}\]
\[\text{ Clearly, }\overrightarrow{\left| AB \right|}^2 = \overrightarrow{\left| BC \right|}^2 + \overrightarrow{\left| CA \right|}^2 \]
\[ \Rightarrow A B^2 = B C^2 + C A^2 \]
So, A, B, C forms a right angled triangle.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Algebra of Vectors - Exercise 23.6 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 23 Algebra of Vectors
Exercise 23.6 | Q 13 | पृष्ठ ४९

संबंधित प्रश्‍न

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.


If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment  AB.


Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel


If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.


Represent graphically a displacement of 40 km, 30° east of north.


In Figure, identify the following vector.

 

Coinitial


`veca and -veca` are collinear.


Two collinear vectors are always equal in magnitude.


Two vectors having the same magnitude are collinear.


Find the direction cosines of the vector `hati + 2hatj + 3hatk`.


Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.


Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.


Show that the points A, B and C with position vectors `veca = 3hati - 4hatj - 4hatk`, `vecb = 2hati - hatj + hatk` and `vecc = hati - 3hatj - 5hatk`, respectively form the vertices of a right angled triangle.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]


Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.


Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.


The adjacent sides of a parallelogram are represented by the vectors \[\vec{a} = \hat{i} + \hat{j} - \hat{k}\text{ and }\vec{b} = - 2 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find unit vectors parallel to the diagonals of the parallelogram.


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


\[\text{If }\vec{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \vec{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}\text{ and }\vec{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \vec{a} - 2 \vec{b} + 4 \vec{c} \right| .\]

 


If  \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\] 


 If  \[\hat{ a  } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that

 \[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\] 


Show that the vectors \[\vec{a} = \frac{1}{7}\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right), \vec{b} = \frac{1}{7}\left( 3\hat{i} - 6 {j} + 2 \hat{k} \right), \vec{c} = \frac{1}{7}\left( 6 \hat{i} + 2 \hat{j} - 3 {k} \right)\] are mutually perpendicular unit vectors. 


If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]  


If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of  \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\]  where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\]  is perpendicular to \[\vec{\alpha}\]


Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle. 


Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


Show that the vectors \[2 \hat{i} - 3 \hat{j} + 4 \hat{k}\text{ and }- 4 \hat{i} + 6 \hat{j} - 8 \hat{k}\] are collinear.


If \[\vec{a}  \times  \vec{b}  =  \vec{c}  \times  \vec{d}   \text { and }   \vec{a}  \times  \vec{c}  =  \vec{b}  \times  \vec{d}\] , show that \[\vec{a}  -  \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .


A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


Let (h, k) be a fixed point where h > 0, k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the points P and Q. Then the minimum area of the ΔOPQ. O being the origin, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×