English

Show that the Points a ( 2 ^ I − ^ J + ^ K ) , B ( ^ I − 3 ^ J − 5 ^ K ) , C ( 3 ^ I − 4 ^ J − 4 ^ K ) Are the Vertices of a Right Angled Triangle. - Mathematics

Advertisements
Advertisements

Question

Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.

Sum

Solution

Given the points \[A\left( 2 \hat{i} - \hat{j} + \hat{k} \right), B\left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right)\] and \[C\left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right) .\] Then, \[\vec{AB} =\] Position vector of B - Position vector of A 
\[= \hat{i} - 3 \hat{j} - 5 \hat{k} - \left( 2 \hat{i} - \hat{j} + \hat{k} \right)\]
\[ = \hat{i} - 3 \hat{j} - 5 \hat{k} - 2 \hat{i} + \hat{j} - \hat{k} \]
\[ = - \hat{i} - 2 \hat{j} - 6 \hat{k}\]

\[\overrightarrow{BC} =\] Position vector of  C - Position vector of B
\[= 3 \hat{i} - 4 \hat{j} - 4 \hat{k} - \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right)\]
\[ = 3 \hat{i} - 4 \hat{j} - 4 \hat{k} - \hat{i} + 3 \hat{j} + 5 \hat{k} \]
\[ = 2 \hat{i} - \hat{j} + \hat{k}\]
\[\overrightarrow{CA} =\] Position vector of A- Position vector of C
\[= 2 \hat{i} - \hat{j} + \hat{k} - \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\]
\[ = 2 \hat{i} - \hat{j} + \hat{k} - 3 \hat{i} + 4 \hat{j} + 4 \hat{k} \]
\[ = - \hat{i} + 3 \hat{j} + 5 \hat{k}\]
Clearly, 
\[\overrightarrow{AB} + \vec{BC} + \vec{CA} = \vec{0}\]
\[\text{ Now, }\overrightarrow{\left| AB \right|} = \sqrt{\left( - 1 \right)^2 + \left( - 2 \right)^2 + \left( - 6 \right)^2} = \sqrt{1 + 4 + 36} = \sqrt{41}\]
\[ \overrightarrow{\left| BC \right|} = \sqrt{\left( 2 \right)^2 + \left( - 1 \right)^2 + \left( 1 \right)^2} = \sqrt{4 + 1 + 1} = \sqrt{6}\]
\[ \overrightarrow{\left| CA \right|} = \sqrt{\left( - 1 \right)^2 + \left( 3 \right)^2 + \left( 5 \right)^2} = \sqrt{1 + 9 + 25} = \sqrt{35}\]
\[\text{ Clearly, }\overrightarrow{\left| AB \right|}^2 = \overrightarrow{\left| BC \right|}^2 + \overrightarrow{\left| CA \right|}^2 \]
\[ \Rightarrow A B^2 = B C^2 + C A^2 \]
So, A, B, C forms a right angled triangle.
shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - Exercise 23.6 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
Exercise 23.6 | Q 13 | Page 49

RELATED QUESTIONS

If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.


Classify the following measures as scalar and vector.

10 kg


In Figure, identify the following vector.

 

Coinitial


Two vectors having the same magnitude are collinear.


Find the value of x for which `x(hati + hatj + hatk)` is a unit vector.


Express \[\vec{AB}\]  in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (4, −1), B (1, 3)
Find \[\left| \vec{A} B \right|\] in each case.


Express \[\vec{AB}\]  in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (−6, 3), B (−2, −5)
Find \[\left| \vec{A} B \right|\] in each case.


ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]


Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]


Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


If  \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\] 


 If  \[\hat{ a  } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that

 \[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\] 


If \[\vec{p} = 5 \hat{i} + \lambda \hat{j} - 3 \hat{k} \text{ and } \vec{q} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then find the value of λ, so that \[\vec{p} + \vec{q}\] and \[\vec{p} - \vec{q}\]  are perpendicular vectors. 


If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of  \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\]  where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\]  is perpendicular to \[\vec{\alpha}\]


If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\]  then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example. 


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.


If \[\vec{a}  \times  \vec{b}  =  \vec{c}  \times  \vec{d}   \text { and }   \vec{a}  \times  \vec{c}  =  \vec{b}  \times  \vec{d}\] , show that \[\vec{a}  -  \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.


Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.


If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.


Position vector of a point P is a vector whose initial point is origin.


If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


A line l passes through point (– 1, 3, – 2) and is perpendicular to both the lines `x/1 = y/2 = z/3` and `(x + 2)/-3 = (y - 1)/2 = (z + 1)/5`. Find the vector equation of the line l. Hence, obtain its distance from the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×