English

Find the Angle Between the Vectors → a = ^ I + 2 ^ J − ^ K , → B = ^ I − ^ J + ^ K - Mathematics

Advertisements
Advertisements

Question

Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]

Solution

\[\text { Let }\theta\text{ be the angle between } \vec{a} \text{ and } \vec{b} . \]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 2 \right)^2 + \left( - 1 \right)^2} = \sqrt{6}\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]

\[ \vec{a} . \vec{b} = 1 - 2 - 1 = - 2\]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{- 2}{\sqrt{6}\sqrt{3}} = \frac{- 2}{\sqrt{18}} = \frac{- \sqrt{2} \times \sqrt{2}}{\sqrt{2} \times \sqrt{9}} = \frac{- \sqrt{2}}{3}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{- \sqrt{2}}{3} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.1 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.1 | Q 5.5 | Page 30

RELATED QUESTIONS

Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel


Represent graphically a displacement of 40 km, 30° east of north.


Classify the following measures as scalar and vector.

10 kg


Classify the following as scalar and vector quantity.

Time period


In Figure, identify the following vector.

 

Coinitial


Find the direction cosines of the vector `hati + 2hatj + 3hatk`.


Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).


Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of the x-axis.


Find the value of x for which `x(hati + hatj + hatk)` is a unit vector.


If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.


Let `veca` and `vecb` be two unit vectors, and θ is the angle between them. Then `veca + vecb` is a unit vector if ______.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.


Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]  


If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of  \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\]  where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\]  is perpendicular to \[\vec{\alpha}\]


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).


Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.


Show that the vectors \[2 \hat{i} - 3 \hat{j} + 4 \hat{k}\text{ and }- 4 \hat{i} + 6 \hat{j} - 8 \hat{k}\] are collinear.


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.


Position vector of a point P is a vector whose initial point is origin.


The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:


If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×