English

A vector rr→ has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of rr→, given that rr→ makes an acute angle with x-axis. - Mathematics

Advertisements
Advertisements

Question

A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.

Sum

Solution

Let `vec"a", vec"b"` and `vec"c"` three vectors such that `vec"a" = 2"k", vec"b"` = 3k and `vec"c"` = – 6k

If l, m and n are the direction cosines of vector `vec'r"`, then

l = `vec"a"/|vec"r"| = (2"k")/14 = "k"/7`

m = `vec"b"/|vec"r"| = (3"k")/14` and n = `vec"c"/|vec"r"| = (-6"k")/14 = (-3"k")/7`

We know that l2 + m2 + n2 = 1

∴ `"k"^2/49 + (9"k"^2)/196 + (9"k"^2)/49` = 1

⇒ `(4"k"^2 + 9"k"^2 + 36"k"^2)/196` = 1

⇒ 49k2 = 196

⇒ k2 = 4

∴  k = ± 2 and l = `"k"/7 = 2/7`

m = `(3"k")/14 = (3 xx 2)/14 = 3/7`

And n = `(-3"k")/7 (-3 xx 2)/7 = (-6)/7`

∴ `hat"r" = +- (2/7hat"i" + 3/7hat"j" - 6/7hat"k")`

`hat"r" = hat"r"|vec"r"|`

⇒ `vec"r" = +-(2/7hat"i" + 3/7hat"j" - 6/7hat"k")*14`

= `+- (4hat"i" + 6hat"j" - 12hat"k")`

Hence, the required direction cosines are `2/7, 3/7, (-6)/7` and the components of `vec"r"` are `4hat"i", 6hat"j"` and `-12hat"k"`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise [Page 215]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise | Q 7 | Page 215

RELATED QUESTIONS

Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector

`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.


Find the position vector of a point which divides the join of points with position vectors `veca-2vecb" and "2veca+vecb`externally in the ratio 2 : 1


Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel


Represent graphically a displacement of 40 km, 30° east of north.


Two collinear vectors are always equal in magnitude.


Two vectors having the same magnitude are collinear.


Let `veca` and `vecb` be two unit vectors, and θ is the angle between them. Then `veca + vecb` is a unit vector if ______.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]


Find the angle between the vectors \[\vec{a} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k}\]


The adjacent sides of a parallelogram are represented by the vectors \[\vec{a} = \hat{i} + \hat{j} - \hat{k}\text{ and }\vec{b} = - 2 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find unit vectors parallel to the diagonals of the parallelogram.


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


If  \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\] 


If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]


If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.


If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =


Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


A line l passes through point (– 1, 3, – 2) and is perpendicular to both the lines `x/1 = y/2 = z/3` and `(x + 2)/-3 = (y - 1)/2 = (z + 1)/5`. Find the vector equation of the line l. Hence, obtain its distance from the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×