Advertisements
Advertisements
Question
Find a vector of magnitude 6, which is perpendicular to both the vectors `2hat"i" - hat"j" + 2hat"k"` and `4hat"i" - hat"j" + 3hat"k"`.
Solution
Let `2hat"i" - hat"j" + 2hat"k"` and `4hat"i" - hat"j" + 3hat"k"`
We know that unit vector perpendicular to `vec"a"` and `vec"b" = ((vec"a" xx vec"b"))/|vec"a" xx vec"b"|`
`vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(2, -1, 2),(4, -1, 3)|`
= `hat"i"(-3 + 2) - hat"j"(6 - 8) + hat"k"(-2 + 4)`
= `-hat"i" + 2hat"j" + 2hat"k"`
∴ `|vec"a" xx vec"b"| = sqrt((-1)^2 + (2)^2 + (2)^2)`
= `sqrt(1 + 4 + 4)`
= `sqrt(9)`
= 3
So, `((vec"a" xx vec"b"))/|vec"a" xx vec"b"| = (-"i" + 2hat"j" + 2hat"k")/3`
= `1/3(-hat"i" + 2hat"j" + 2hat"k")`
Now the vector of magnitude 6 = `1/3(-hat"i" + 2hat"j" + 2hat"k") * 6`
= `2(-hat"i" + 2hat"j" + 2hat"k")`
= `-2hat"i" + 4hat"j" + 4hat"k"`
Hence, the required vector is `-2hat"i" + 4hat"j" + 4hat"k"`.
APPEARS IN
RELATED QUESTIONS
Find a vector `veca` of magnitude `5sqrt2` , making an angle of `π/4` with x-axis, `π/2` with y-axis and an acute angle θ with z-axis.
Find the magnitude of two vectors `veca and vecb`, having the same magnitude and such that the angle between them is 60° and their scalar product is `1/2`.
Find a vector of magnitude 5 units, and parallel to the resultant of the vectors `veca = 2i + 3hatj - hatk` and `vecb = hati - 2hatj + hatk`.
If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `veca + vecb+ vecc` is equally inclined to `veca, vecb` and `vecc`.
If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, find the angle which `veca + vecb + vecc`make with `veca or vecb or vecc`
Find the unit vector in the direction of \[3 \hat{i} + 4 \hat{j} - 12 \hat{k} .\]
If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is `sqrt(3)`.
Define "zero vector".
Write a vector of magnitude 12 units which makes 45° angle with X-axis, 60° angle with Y-axis and an obtuse angle with Z-axis.
Write the length (magnitude) of a vector whose projections on the coordinate axes are 12, 3 and 4 units.
Write a vector in the direction of vector \[5 \hat{i} - \hat{j} + 2 \hat{k}\] which has magnitude of 8 unit.
Find a vector in the direction of vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] which has magnitude 21 units.
Find all vectors of magnitude `10sqrt(3)` that are perpendicular to the plane of `hat"i" + 2hat"j" + hat"k"` and `-hat"i" + 3hat"j" + 4hat"k"`
The magnitude of the vector `6hat"i" + 2hat"j" + 3hat"k"` is ______.
A vector `vec"r"` is inclined at equal angles to the three axes. If the magnitude of `vec"r"` is `2sqrt(3)` units, find `vec"r"`.
Prove that in any triangle ABC, cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively.
The vector in the direction of the vector `hat"i" - 2hat"j" + 2hat"k"` that has magnitude 9 is ______.
Two equal forces acting at a point with an angle of 60° between them, if the resultant is equal `30sqrt(3)N`, the magnitude of the force will be
The area under a velocity-time curve represents the change in ______?
Which of the following statements is false about forces/ couple?
In a triangle ABC three forces of magnitudes `3vec(AB), 2vec(AC)` and `6vec(CB)` are acting along the sides AB, AC and CB respectively. If the resultant meets AC at D, then the ratio DC : AD will be equal to :