Advertisements
Advertisements
प्रश्न
Find a vector of magnitude 6, which is perpendicular to both the vectors `2hat"i" - hat"j" + 2hat"k"` and `4hat"i" - hat"j" + 3hat"k"`.
उत्तर
Let `2hat"i" - hat"j" + 2hat"k"` and `4hat"i" - hat"j" + 3hat"k"`
We know that unit vector perpendicular to `vec"a"` and `vec"b" = ((vec"a" xx vec"b"))/|vec"a" xx vec"b"|`
`vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(2, -1, 2),(4, -1, 3)|`
= `hat"i"(-3 + 2) - hat"j"(6 - 8) + hat"k"(-2 + 4)`
= `-hat"i" + 2hat"j" + 2hat"k"`
∴ `|vec"a" xx vec"b"| = sqrt((-1)^2 + (2)^2 + (2)^2)`
= `sqrt(1 + 4 + 4)`
= `sqrt(9)`
= 3
So, `((vec"a" xx vec"b"))/|vec"a" xx vec"b"| = (-"i" + 2hat"j" + 2hat"k")/3`
= `1/3(-hat"i" + 2hat"j" + 2hat"k")`
Now the vector of magnitude 6 = `1/3(-hat"i" + 2hat"j" + 2hat"k") * 6`
= `2(-hat"i" + 2hat"j" + 2hat"k")`
= `-2hat"i" + 4hat"j" + 4hat"k"`
Hence, the required vector is `-2hat"i" + 4hat"j" + 4hat"k"`.
APPEARS IN
संबंधित प्रश्न
Find a vector `veca` of magnitude `5sqrt2` , making an angle of `π/4` with x-axis, `π/2` with y-axis and an acute angle θ with z-axis.
Find `|veca| and |vecb|`, if `(veca + vecb).(veca -vecb) = 8 and |veca| = 8|vecb|.`
Find the magnitude of two vectors `veca and vecb`, having the same magnitude and such that the angle between them is 60° and their scalar product is `1/2`.
If `veca` is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then λ`veca` is unit vector if ______.
If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is `sqrt(3)`.
If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \text { and } \vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a vector of magnitude 6 units which is parallel to the vector \[2 \vec{a} - \vec{b} + 3 \vec{c .}\]
Find a vector \[\vec{r}\] of magnitude \[3\sqrt{2}\] units which makes an angle of \[\frac{\pi}{4}\] and \[\frac{\pi}{4}\] with y and z-axes respectively.
Write a vector of magnitude 12 units which makes 45° angle with X-axis, 60° angle with Y-axis and an obtuse angle with Z-axis.
Write the length (magnitude) of a vector whose projections on the coordinate axes are 12, 3 and 4 units.
Find a vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - \hat{j} + 2 \hat{k} ,\] which has magnitude of 6 units.
Write two different vectors having same magnitude.
The magnitude of the vector `6hat"i" + 2hat"j" + 3hat"k"` is ______.
A vector `vec"r"` is inclined at equal angles to the three axes. If the magnitude of `vec"r"` is `2sqrt(3)` units, find `vec"r"`.
Let `vecalpha = hati + 2hatj - hatk, vecbeta = 2hati - hatj + 3hatk, vecγ = 2hati + hatj + 6hatk`. If `vecalpha` and `vecbeta` are both perpendicular to a vector `vecδ` and `vecδ. vecγ` = 10, then the magnitude of `vecδ` is
If the sum of two-unit vectors is a unit vector, then the magnitude of their difference is
The area under a velocity-time curve represents the change in ______?
In a triangle ABC three forces of magnitudes `3vec(AB), 2vec(AC)` and `6vec(CB)` are acting along the sides AB, AC and CB respectively. If the resultant meets AC at D, then the ratio DC : AD will be equal to :
The magnitude of the vector `6hati - 2hatj + 3hatk` is ______.
Find a vector of magnitude 20 units parallel to the vector `2hati + 5hatj + 4hatk`.