हिंदी

Find and|a→|and|b→|, if and(a→+b→).(a→-b→)=8and|a→|=8|b→|. - Mathematics

Advertisements
Advertisements

प्रश्न

Find `|veca| and |vecb|`, if `(veca + vecb).(veca -vecb) = 8 and |veca| = 8|vecb|.`

योग

उत्तर

We have, `(veca + vecb) xx (veca - vecb) = 8`

⇒ `veca  xx veca - veca xx vecb + vecb xx veca - vecb xx vecb = 8`

but, `veca xx vecb = vecb xx veca`

∴ `veca xx veca - veca xx vecb + veca xx vecb - vecb xx vecb = 8`

= `veca xx veca . vecb xx vecb = 8`

= `64|vecb|^2 - |vecb|^2 = 8`   `[∵ |veca| = 8|vecb|]`

= `63|vecb|^2 = 8`

∴ `|vecb| = sqrt(8/63) = 2/3sqrt(2/7)`

But `|veca| = 8 |vecb|`

⇒ `|veca| = (8sqrt8)/sqrt63`

`= (16sqrt2)/(3sqrt7)`

Hence, `|veca| = (16sqrt2)/(3sqrt7)`

and `|vecb| = (2sqrt2)/(3sqrt7)`

shaalaa.com
Magnitude and Direction of a Vector
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Vector Algebra - Exercise 10.3 [पृष्ठ ४४८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 10 Vector Algebra
Exercise 10.3 | Q 6 | पृष्ठ ४४८

संबंधित प्रश्न

Find a vector `veca` of magnitude `5sqrt2` , making an angle of `π/4` with x-axis, `π/2` with y-axis and an acute angle θ with z-axis. 


Find the magnitude of two vectors `veca and vecb`, having the same magnitude and such that the angle between them is 60° and their scalar product is `1/2`.


Find a vector of magnitude 5 units, and parallel to the resultant of the vectors `veca = 2i + 3hatj - hatk` and `vecb = hati - 2hatj + hatk`.


If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, find the angle which `veca + vecb + vecc`make with `veca or vecb or vecc`


Find the magnitude of the vector \[\vec{a} = 2 \hat{i} + 3 \hat{j} - 6 \hat{k} .\]


Find the unit vector in the direction of \[3 \hat{i} + 4 \hat{j} - 12 \hat{k} .\]


If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is `sqrt(3)`.


Find a vector of magnitude of 5 units parallel to the resultant of the vectors \[\vec{a} = 2 \hat{i} + 3 \hat{j} - \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} +\widehat{k} .\]


Find a vector \[\vec{r}\] of magnitude \[3\sqrt{2}\] units which makes an angle of \[\frac{\pi}{4}\] and \[\frac{\pi}{4}\] with y and z-axes respectively. 


Define "zero vector".


Find a vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - \hat{j} + 2 \hat{k} ,\] which has magnitude of 6 units.


Write two different vectors having same magnitude.


Write a vector in the direction of vector \[5 \hat{i} - \hat{j} + 2 \hat{k}\] which has magnitude of 8 unit.


Find a vector \[\overrightarrow{a}\] of magnitude \[5\sqrt{2}\], making an angle of \[\frac{\pi}{4}\] with x-axis, \[\frac{\pi}{2}\] with y-axis and an acute angle θ with z-axis. 


Find all vectors of magnitude `10sqrt(3)` that are perpendicular to the plane of `hat"i" + 2hat"j" + hat"k"` and `-hat"i" + 3hat"j" + 4hat"k"`


Prove that in a ∆ABC,  `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, where a, b, c represent the magnitudes of the sides opposite to vertices A, B, C, respectively.


The magnitude of the vector `6hat"i" + 2hat"j" + 3hat"k"` is ______.


Prove that in any triangle ABC, cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively.


If the sum of two-unit vectors is a unit vector, then the magnitude of their difference is


The area under a velocity-time curve represents the change in ______?


Which of the following statements is false about forces/ couple?


In a triangle ABC three forces of magnitudes `3vec(AB), 2vec(AC)` and `6vec(CB)` are acting along the sides AB, AC and CB respectively. If the resultant meets AC at D, then the ratio DC : AD will be equal to :


The magnitude of the vector `6hati - 2hatj + 3hatk` is ______.


Read the following passage and answer the questions given below:

Teams A, B, C went for playing a tug of war game. Teams A, B, C have attached a rope to a metal ring and is trying to pull the ring into their own area.

Team A pulls with force F1 = `6hati + 0hatj  kN`,

Team B pulls with force F2 = `-4hati + 4hatj  kN`,

Team C pulls with force F3 = `-3hati - 3hatj  kN`,

  1. What is the magnitude of the force of Team A ?
  2. Which team will win the game?
  3. Find the magnitude of the resultant force exerted by the teams.
    OR
    In what direction is the ring getting pulled?

Find a vector of magnitude 20 units parallel to the vector `2hati + 5hatj + 4hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×