हिंदी

Find all vectors of magnitude 103 that are perpendicular to the plane of ijki^+2j^+k^ and ijk-i^+3j^+4k^ - Mathematics

Advertisements
Advertisements

प्रश्न

Find all vectors of magnitude `10sqrt(3)` that are perpendicular to the plane of `hat"i" + 2hat"j" + hat"k"` and `-hat"i" + 3hat"j" + 4hat"k"`

योग

उत्तर

Let `vec"a" = hat"i" + 2hat"j" + hat"k"` and `vec"b" = -hat"i" + 3hat"j" + 4hat"k"`.

Then `vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(1, 2, 1),(-1, 3, 4)|`

= `hat"i"(8 - 3) - hat"j"(4 + 1) + hat"k"(3 + 2)`

= `5hat"i" - 5hat"j" + 5hat"k"`

⇒ `|vec"a" xx vec"b"| = sqrt((5)^2 + (-5)^2 + (5)^2)`

= `sqrt(3(5)^2)`

= `5sqrt(3)`

Therefore, unit vector perpendicular to the plane of `vec"a"` and `vec"b"` is given by

`(vec"a" xx vec"b")/|vec"a" xx vec"b"| = (5hat"i" - 5hat"j" + 5hat"k")/(5sqrt(3)`

Hence, vectors of magnitude of `10sqrt(3)` that are perpendicular to plane of `vec"a"` and `vec"b"` are `+-10sqrt(3) ((5hat"i" - 5hat"j" + 5hat"k")/(5sqrt(3)))`

i.e., `+- 10(hat"i" - hat"j" + hat"k")`.

shaalaa.com
Magnitude and Direction of a Vector
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Vector Algebra - Solved Examples [पृष्ठ २०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 10 Vector Algebra
Solved Examples | Q 7 | पृष्ठ २०९

संबंधित प्रश्न

Find the magnitude of two vectors `veca and vecb`, having the same magnitude and such that the angle between them is 60° and their scalar product is `1/2`.


If `veca` is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then λ`veca` is unit vector if ______.


Represent the following graphically:
(i) a displacement of 40 km, 30° east of north
(ii) a displacement of 50 km south-east
(iii) a displacement of 70 km, 40° north of west.


If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is `sqrt(3)`.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \text { and } \vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a vector of magnitude 6 units which is parallel to the vector \[2 \vec{a} - \vec{b} + 3 \vec{c .}\]


Find a vector \[\vec{r}\] of magnitude \[3\sqrt{2}\] units which makes an angle of \[\frac{\pi}{4}\] and \[\frac{\pi}{4}\] with y and z-axes respectively. 


A vector \[\vec{r}\] is inclined at equal angles to the three axes. If the magnitude of \[\vec{r}\] is \[2\sqrt{3}\], find \[\vec{r}\].


Define "zero vector".


Write two different vectors having same magnitude.


Write a vector in the direction of vector \[5 \hat{i} - \hat{j} + 2 \hat{k}\] which has magnitude of 8 unit.


Find a vector \[\overrightarrow{a}\] of magnitude \[5\sqrt{2}\], making an angle of \[\frac{\pi}{4}\] with x-axis, \[\frac{\pi}{2}\] with y-axis and an acute angle θ with z-axis. 


Find a vector in the direction of vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] which has magnitude 21 units.


If in a ∆ABC, A = (0, 0), B = (3, 3 \[\sqrt{3}\]), C = (−3\[\sqrt{3}\], 3), then the vector of magnitude 2 \[\sqrt{2}\] units directed along AO, where O is the circumcentre of ∆ABC is 

 


Prove that in a ∆ABC,  `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, where a, b, c represent the magnitudes of the sides opposite to vertices A, B, C, respectively.


A vector `vec"r"` is inclined at equal angles to the three axes. If the magnitude of `vec"r"` is `2sqrt(3)` units, find `vec"r"`.


Find a vector of magnitude 6, which is perpendicular to both the vectors `2hat"i" - hat"j" + 2hat"k"` and `4hat"i" - hat"j" + 3hat"k"`.


Prove that in any triangle ABC, cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively.


If the sum of two-unit vectors is a unit vector, then the magnitude of their difference is


Two equal forces acting at a point with an angle of 60° between them, if the resultant is equal `30sqrt(3)N`, the magnitude of the force will be


The area under a velocity-time curve represents the change in ______?


In a triangle ABC three forces of magnitudes `3vec(AB), 2vec(AC)` and `6vec(CB)` are acting along the sides AB, AC and CB respectively. If the resultant meets AC at D, then the ratio DC : AD will be equal to :


Read the following passage and answer the questions given below:

Teams A, B, C went for playing a tug of war game. Teams A, B, C have attached a rope to a metal ring and is trying to pull the ring into their own area.

Team A pulls with force F1 = `6hati + 0hatj  kN`,

Team B pulls with force F2 = `-4hati + 4hatj  kN`,

Team C pulls with force F3 = `-3hati - 3hatj  kN`,

  1. What is the magnitude of the force of Team A ?
  2. Which team will win the game?
  3. Find the magnitude of the resultant force exerted by the teams.
    OR
    In what direction is the ring getting pulled?

Find a vector of magnitude 9 units and perpendicular to the vectors.

`veca = 4hati - hatj + hatk` and `vecb = -2hati + hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×