हिंदी

Find a vector of magnitude 9 units and perpendicular to the vectors. a→=4i^-j^+k^ and b→=-2i^+j^-2k^ - Mathematics

Advertisements
Advertisements

प्रश्न

Find a vector of magnitude 9 units and perpendicular to the vectors.

`veca = 4hati - hatj + hatk` and `vecb = -2hati + hatj - 2hatk`

योग

उत्तर

A vector of magnitude 9 units and perpendicular to the vectors `veca` and `vecb` is `9((veca xx vecb)/(|veca xx vecb|))`

Given, `veca = 4hati - hatj + hatk` and `vecb = -2hati + hatj - 2hatk`

`veca xx vecb = |(hati, hatj, hatk),(4, -1, 1),(-2, 1, -2)|`

= `hati + 6hatj + 2hatk` and `|veca xx vecb| = sqrt(41)`

Hence required vector is `9/sqrt(41)(hati + 6hatj + 2hatk)`

shaalaa.com
Magnitude and Direction of a Vector
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (April) Specimen Paper

संबंधित प्रश्न

Find a vector `veca` of magnitude `5sqrt2` , making an angle of `π/4` with x-axis, `π/2` with y-axis and an acute angle θ with z-axis. 


Find `|veca| and |vecb|`, if `(veca + vecb).(veca -vecb) = 8 and |veca| = 8|vecb|.`


Find the magnitude of two vectors `veca and vecb`, having the same magnitude and such that the angle between them is 60° and their scalar product is `1/2`.


If `veca` is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then λ`veca` is unit vector if ______.


Find a vector of magnitude 5 units, and parallel to the resultant of the vectors `veca = 2i + 3hatj - hatk` and `vecb = hati - 2hatj + hatk`.


If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `veca +  vecb+ vecc` is equally inclined to `veca, vecb` and `vecc`.


Represent the following graphically:
(i) a displacement of 40 km, 30° east of north
(ii) a displacement of 50 km south-east
(iii) a displacement of 70 km, 40° north of west.


Find the unit vector in the direction of \[3 \hat{i} + 4 \hat{j} - 12 \hat{k} .\]


Find a vector \[\vec{r}\] of magnitude \[3\sqrt{2}\] units which makes an angle of \[\frac{\pi}{4}\] and \[\frac{\pi}{4}\] with y and z-axes respectively. 


A vector \[\vec{r}\] is inclined at equal angles to the three axes. If the magnitude of \[\vec{r}\] is \[2\sqrt{3}\], find \[\vec{r}\].


Define "zero vector".


Write a vector of magnitude 12 units which makes 45° angle with X-axis, 60° angle with Y-axis and an obtuse angle with Z-axis.


Write the length (magnitude) of a vector whose projections on the coordinate axes are 12, 3 and 4 units.


Find a vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - \hat{j} + 2 \hat{k} ,\] which has magnitude of 6 units.


Find a vector \[\overrightarrow{a}\] of magnitude \[5\sqrt{2}\], making an angle of \[\frac{\pi}{4}\] with x-axis, \[\frac{\pi}{2}\] with y-axis and an acute angle θ with z-axis. 


Find a vector in the direction of vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] which has magnitude 21 units.


Find all vectors of magnitude `10sqrt(3)` that are perpendicular to the plane of `hat"i" + 2hat"j" + hat"k"` and `-hat"i" + 3hat"j" + 4hat"k"`


Prove that in a ∆ABC,  `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, where a, b, c represent the magnitudes of the sides opposite to vertices A, B, C, respectively.


The magnitude of the vector `6hat"i" + 2hat"j" + 3hat"k"` is ______.


Prove that in any triangle ABC, cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively.


Let `vecalpha = hati + 2hatj - hatk, vecbeta = 2hati - hatj + 3hatk, vecγ = 2hati + hatj + 6hatk`. If `vecalpha` and `vecbeta` are both perpendicular to a vector `vecδ` and `vecδ. vecγ` = 10, then the magnitude of `vecδ` is


If the sum of two-unit vectors is a unit vector, then the magnitude of their difference is


Two equal forces acting at a point with an angle of 60° between them, if the resultant is equal `30sqrt(3)N`, the magnitude of the force will be


The magnitude of the vector `6hati - 2hatj + 3hatk` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×