हिंदी

Prove that in any triangle ABC, cos A = bcabcb2+c2-a22bc, where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that in any triangle ABC, cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively.

योग

उत्तर


Here, in the given figure, the components of c are c cos A and c sin A.

∴ `vec"CD"` = b – c cos A

In ΔBDC,

a2 = CD2 + BD2

⇒ a2 = (b – c cos A)2 + (c sin A)2

⇒ a2 = b2 + c2 cos2A – 2bc cos A + c2 sin2A

⇒ a2 = b2 + c2 (cos2A + sin2A) – 2bc cos A

⇒ a2 = b2 + c2 – 2bc cos A

⇒ 2bc cos A = b2 + c2 – a2

∴ cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`

Hence Proved.

shaalaa.com
Magnitude and Direction of a Vector
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Vector Algebra - Exercise [पृष्ठ २१६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 10 Vector Algebra
Exercise | Q 15 | पृष्ठ २१६

संबंधित प्रश्न

Find a vector `veca` of magnitude `5sqrt2` , making an angle of `π/4` with x-axis, `π/2` with y-axis and an acute angle θ with z-axis. 


Find the magnitude of two vectors `veca and vecb`, having the same magnitude and such that the angle between them is 60° and their scalar product is `1/2`.


If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is `sqrt(3)`.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \text { and } \vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a vector of magnitude 6 units which is parallel to the vector \[2 \vec{a} - \vec{b} + 3 \vec{c .}\]


Find a vector \[\vec{r}\] of magnitude \[3\sqrt{2}\] units which makes an angle of \[\frac{\pi}{4}\] and \[\frac{\pi}{4}\] with y and z-axes respectively. 


A vector \[\vec{r}\] is inclined at equal angles to the three axes. If the magnitude of \[\vec{r}\] is \[2\sqrt{3}\], find \[\vec{r}\].


Write a vector in the direction of vector \[5 \hat{i} - \hat{j} + 2 \hat{k}\] which has magnitude of 8 unit.


Find a vector \[\overrightarrow{a}\] of magnitude \[5\sqrt{2}\], making an angle of \[\frac{\pi}{4}\] with x-axis, \[\frac{\pi}{2}\] with y-axis and an acute angle θ with z-axis. 


Find all vectors of magnitude `10sqrt(3)` that are perpendicular to the plane of `hat"i" + 2hat"j" + hat"k"` and `-hat"i" + 3hat"j" + 4hat"k"`


The magnitude of the vector `6hat"i" + 2hat"j" + 3hat"k"` is ______.


The vector in the direction of the vector `hat"i" - 2hat"j" + 2hat"k"` that has magnitude 9 is ______.


Let `vecalpha = hati + 2hatj - hatk, vecbeta = 2hati - hatj + 3hatk, vecγ = 2hati + hatj + 6hatk`. If `vecalpha` and `vecbeta` are both perpendicular to a vector `vecδ` and `vecδ. vecγ` = 10, then the magnitude of `vecδ` is


If the sum of two-unit vectors is a unit vector, then the magnitude of their difference is


Two equal forces acting at a point with an angle of 60° between them, if the resultant is equal `30sqrt(3)N`, the magnitude of the force will be


The area under a velocity-time curve represents the change in ______?


Which of the following statements is false about forces/ couple?


In a triangle ABC three forces of magnitudes `3vec(AB), 2vec(AC)` and `6vec(CB)` are acting along the sides AB, AC and CB respectively. If the resultant meets AC at D, then the ratio DC : AD will be equal to :


The magnitude of the vector `6hati - 2hatj + 3hatk` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×